cs.AI updates on arXiv.org 07月09日 12:02
CoDy: Counterfactual Explainers for Dynamic Graphs
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为CoDy的模型无关解释方法,用于解释动态图神经网络(TGNNs)的预测,通过蒙特卡洛树搜索和启发式选择策略,有效探索潜在解释子图,显著提升预测解释性。

arXiv:2403.16846v2 Announce Type: replace-cross Abstract: Temporal Graph Neural Networks (TGNNs) are widely used to model dynamic systems where relationships and features evolve over time. Although TGNNs demonstrate strong predictive capabilities in these domains, their complex architectures pose significant challenges for explainability. Counterfactual explanation methods provide a promising solution by illustrating how modifications to input graphs can influence model predictions. To address this challenge, we present CoDy, Counterfactual Explainer for Dynamic Graphs, a model-agnostic, instance-level explanation approach that identifies counterfactual subgraphs to interpret TGNN predictions. CoDy employs a search algorithm that combines Monte Carlo Tree Search with heuristic selection policies, efficiently exploring a vast search space of potential explanatory subgraphs by leveraging spatial, temporal, and local event impact information. Extensive experiments against state-of-the-art factual and counterfactual baselines demonstrate CoDy's effectiveness, with improvements of 16% in AUFSC+ over the strongest baseline.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

动态图神经网络 解释性方法 CoDy模型 蒙特卡洛树搜索 启发式选择
相关文章