cs.AI updates on arXiv.org 07月09日 12:02
Agents Are All You Need for LLM Unlearning
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为ALU的新型LLM去学习框架,通过多智能体协同工作,无需更新模型权重即可实现高效去学习,同时保持模型效用,在多个基准测试中表现出色。

arXiv:2502.00406v2 Announce Type: replace Abstract: Information removal or suppression in large language models (LLMs) is a desired functionality, useful in AI regulation, legal compliance, safety, and privacy. LLM unlearning methods aim to remove information on demand from LLMs. Current LLM unlearning methods struggle to balance the unlearning efficacy and utility due to the competing nature of these objectives. Keeping the unlearning process computationally feasible without assuming access to the model weights is an overlooked area. In this work we show that \textit{agents might be all we need for effective and practical inference-time LLM unlearning}. We present the first agentic LLM unlearning (\texttt{ALU}) method, a multi-agent, retrain-free, model-agnostic approach to LLM unlearning that achieves effective unlearning while preserving the utility. Our \texttt{ALU} framework unlearns by involving multiple LLM agents, each designed for a specific step in the unlearning process, without the need to update model weights for any of the agents in the framework. Users can easily request any set of unlearning instances in any sequence, and \texttt{ALU} seamlessly adapts in real time. This is facilitated without requiring any changes in the underlying LLM model. Through extensive experiments on established benchmarks (TOFU, WMDP, WPU) and jailbreaking techniques (many shot, target masking, other languages), we demonstrate that \texttt{ALU} consistently stands out as the most robust inference-time LLM unlearning framework among current state-of-the-art methods while incurring time cost that remains effectively constant regardless of the number of unlearning targets. We further highlight \texttt{ALU}'s superior performance compared to existing methods when evaluated at scale. Specifically, \texttt{ALU} is assessed on up to 1000 unlearning targets, exceeding the evaluation scope of all previously proposed LLM unlearning methods.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM去学习 智能体 模型无关 ALU框架
相关文章