cs.AI updates on arXiv.org 07月08日 14:58
Towards Fair RAG: On the Impact of Fair Ranking in Retrieval-Augmented Generation
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文首次系统评估了集成公平性排名的RAG系统,探讨其对系统性能和源引用公平性的影响,证明公平性检索可提升系统质量和公平引用。

arXiv:2409.11598v4 Announce Type: replace-cross Abstract: Despite the central role of retrieval in retrieval-augmented generation (RAG) systems, much of the existing research on RAG overlooks the well-established field of fair ranking and fails to account for the interests of all stakeholders involved. In this paper, we conduct the first systematic evaluation of RAG systems that integrate fairness-aware rankings, addressing both ranking fairness and attribution fairness, which ensures equitable exposure of the sources cited in the generated content. Our evaluation focuses on measuring item-side fairness, specifically the fair exposure of relevant items retrieved by RAG systems, and investigates how this fairness impacts both the effectiveness of the systems and the attribution of sources in the generated output that users ultimately see. By experimenting with twelve RAG models across seven distinct tasks, we show that incorporating fairness-aware retrieval often maintains or even enhances both ranking quality and generation quality, countering the common belief that fairness compromises system performance. Additionally, we demonstrate that fair retrieval practices lead to more balanced attribution in the final responses, ensuring that the generator fairly cites the sources it relies on. Our findings underscore the importance of item-side fairness in retrieval and generation, laying the foundation for responsible and equitable RAG systems and guiding future research in fair ranking and attribution.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

RAG系统 公平性评价 源引用公平
相关文章