cs.AI updates on arXiv.org 07月08日 14:58
Beyond Independent Passages: Adaptive Passage Combination Retrieval for Retrieval Augmented Open-Domain Question Answering
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为AdaPCR的RAG模型,通过考虑段落组合作为检索和重排序的单位,有效提升了开放域问答的性能,尤其在多跳推理方面表现突出。

arXiv:2507.04069v1 Announce Type: cross Abstract: Retrieval-augmented generation (RAG) enhances large language models (LLMs) by incorporating external documents at inference time, enabling up-to-date knowledge access without costly retraining. However, conventional RAG methods retrieve passages independently, often leading to redundant, noisy, or insufficiently diverse context-particularly problematic - particularly problematic in noisy corpora and for multi-hop questions. To address this, we propose Adaptive Passage Combination Retrieval (AdaPCR), a novel framework for open-domain question answering with black-box LMs. AdaPCR explicitly models dependencies between passages by considering passage combinations as units for retrieval and reranking. It consists of a context-aware query reformulation using concatenated passages, and a reranking step trained with a predictive objective aligned with downstream answer likelihood. Crucially, AdaPCR adaptively selects the number of retrieved passages without additional stopping modules. Experiments across several QA benchmarks show that AdaPCR outperforms baselines, particularly in multi-hop reasoning, demonstrating the effectiveness of modeling inter-passage dependencies for improved retrieval.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

RAG模型 AdaPCR 问答系统 多跳推理 知识检索
相关文章