cs.AI updates on arXiv.org 07月08日 14:58
TayFCS: Towards Light Feature Combination Selection for Deep Recommender Systems
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为TayFCS的轻量级特征组合选择方法,通过Taylor Expansion Scorer和Logistic Regression Elimination技术,有效提升推荐模型性能,减少信息冗余,验证了方法的有效性和效率。

arXiv:2507.03895v1 Announce Type: cross Abstract: Feature interaction modeling is crucial for deep recommendation models. A common and effective approach is to construct explicit feature combinations to enhance model performance. However, in practice, only a small fraction of these combinations are truly informative. Thus it is essential to select useful feature combinations to reduce noise and manage memory consumption. While feature selection methods have been extensively studied, they are typically limited to selecting individual features. Extending these methods for high-order feature combination selection presents a significant challenge due to the exponential growth in time complexity when evaluating feature combinations one by one. In this paper, we propose $\textbf{TayFCS}$, a lightweight feature combination selection method that significantly improves model performance. Specifically, we propose the Taylor Expansion Scorer (TayScorer) module for field-wise Taylor expansion on the base model. Instead of evaluating all potential feature combinations' importance by repeatedly running experiments with feature adding and removal, this scorer only needs to approximate the importance based on their sub-components' gradients. This can be simply computed with one backward pass based on a trained recommendation model. To further reduce information redundancy among feature combinations and their sub-components, we introduce Logistic Regression Elimination (LRE), which estimates the corresponding information gain based on the model prediction performance. Experimental results on three benchmark datasets validate both the effectiveness and efficiency of our approach. Furthermore, online A/B test results demonstrate its practical applicability and commercial value.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

特征组合选择 推荐模型 模型性能提升
相关文章