cs.AI updates on arXiv.org 07月08日 13:54
ReTimeCausal: EM-Augmented Additive Noise Models for Interpretable Causal Discovery in Irregular Time Series
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出ReTimeCausal,一种结合ANM和EM的不规则时间序列因果发现方法,解决传统方法在多尺度交互和神经方法可解释性不足的问题,通过实验证明其在不规则采样和缺失数据条件下的优越性。

arXiv:2507.03310v1 Announce Type: cross Abstract: This paper studies causal discovery in irregularly sampled time series-a pivotal challenge in high-stakes domains like finance, healthcare, and climate science, where missing data and inconsistent sampling frequencies distort causal mechanisms. Traditional methods (e.g., Granger causality, PCMCI) fail to reconcile multi-scale interactions (e.g., hourly storms vs. decadal climate shifts), while neural approaches (e.g., CUTS+) lack interpretability, stemming from a critical gap: existing frameworks either rigidly assume temporal regularity or aggregate dynamics into opaque representations, neglecting real-world granularity and auditable logic. To bridge this gap, we propose ReTimeCausal, a novel integration of Additive Noise Models (ANM) and Expectation-Maximization (EM) that unifies physics-guided data imputation with sparse causal inference. Through kernelized sparse regression and structural constraints, ReTimeCausal iteratively refines missing values (E-step) and causal graphs (M-step), resolving cross-frequency dependencies and missing data issues. Extensive experiments on synthetic and real-world datasets demonstrate that ReTimeCausal outperforms existing state-of-the-art methods under challenging irregular sampling and missing data conditions.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

不规则时间序列 因果发现 ReTimeCausal ANM EM
相关文章