cs.AI updates on arXiv.org 07月02日 12:03
$\sigma$-Maximal Ancestral Graphs
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍并研究了一种名为σ-MAGs的图形对象,用于表示可能存在循环因果关系的有向图,并探讨了其性质及马尔可夫等价类。

arXiv:2507.00093v1 Announce Type: cross Abstract: Maximal Ancestral Graphs (MAGs) provide an abstract representation of Directed Acyclic Graphs (DAGs) with latent (selection) variables. These graphical objects encode information about ancestral relations and d-separations of the DAGs they represent. This abstract representation has been used amongst others to prove the soundness and completeness of the FCI algorithm for causal discovery, and to derive a do-calculus for its output. One significant inherent limitation of MAGs is that they rule out the possibility of cyclic causal relationships. In this work, we address that limitation. We introduce and study a class of graphical objects that we coin ''$\sigma$-Maximal Ancestral Graphs'' (''$\sigma$-MAGs''). We show how these graphs provide an abstract representation of (possibly cyclic) Directed Graphs (DGs) with latent (selection) variables, analogously to how MAGs represent DAGs. We study the properties of these objects and provide a characterization of their Markov equivalence classes.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

σ-MAGs 循环因果关系 抽象图表示 马尔可夫等价类 因果发现
相关文章