arXiv:2507.04883v1 Announce Type: cross Abstract: Deep Reinforcement Learning (DRL) systems are increasingly used in safety-critical applications, yet their security remains severely underexplored. This work investigates backdoor attacks, which implant hidden triggers that cause malicious actions only when specific inputs appear in the observation space. Existing DRL backdoor research focuses solely on training-time attacks requiring unrealistic access to the training pipeline. In contrast, we reveal critical vulnerabilities across the DRL supply chain where backdoors can be embedded with significantly reduced adversarial privileges. We introduce two novel attacks: (1) TrojanentRL, which exploits component-level flaws to implant a persistent backdoor that survives full model retraining; and (2) InfrectroRL, a post-training backdoor attack which requires no access to training, validation, nor test data. Empirical and analytical evaluations across six Atari environments show our attacks rival state-of-the-art training-time backdoor attacks while operating under much stricter adversarial constraints. We also demonstrate that InfrectroRL further evades two leading DRL backdoor defenses. These findings challenge the current research focus and highlight the urgent need for robust defenses.