cs.AI updates on arXiv.org 07月08日 13:54
Multimedia Verification Through Multi-Agent Deep Research Multimodal Large Language Models
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种结合多模态大型语言模型和验证工具的多媒体信息验证系统,通过六个阶段实现内容真实性、地理位置和来源追踪等功能,有效应对现实场景。

arXiv:2507.04410v1 Announce Type: cross Abstract: This paper presents our submission to the ACMMM25 - Grand Challenge on Multimedia Verification. We developed a multi-agent verification system that combines Multimodal Large Language Models (MLLMs) with specialized verification tools to detect multimedia misinformation. Our system operates through six stages: raw data processing, planning, information extraction, deep research, evidence collection, and report generation. The core Deep Researcher Agent employs four tools: reverse image search, metadata analysis, fact-checking databases, and verified news processing that extracts spatial, temporal, attribution, and motivational context. We demonstrate our approach on a challenge dataset sample involving complex multimedia content. Our system successfully verified content authenticity, extracted precise geolocation and timing information, and traced source attribution across multiple platforms, effectively addressing real-world multimedia verification scenarios.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

多媒体验证 多模态语言模型 信息真实性
相关文章