cs.AI updates on arXiv.org 前天 13:53
Adaptive Cubic Regularized Second-Order Latent Factor Analysis Model
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出ACRSLF模型,通过自适应立方正则化及多Hessian向量积评估,有效解决高维数据建模问题,实验证明其优于现有LFA模型。

arXiv:2507.03036v1 Announce Type: cross Abstract: High-dimensional and incomplete (HDI) data, characterized by massive node interactions, have become ubiquitous across various real-world applications. Second-order latent factor models have shown promising performance in modeling this type of data. Nevertheless, due to the bilinear and non-convex nature of the SLF model's objective function, incorporating a damping term into the Hessian approximation and carefully tuning associated parameters become essential. To overcome these challenges, we propose a new approach in this study, named the adaptive cubic regularized second-order latent factor analysis (ACRSLF) model. The proposed ACRSLF adopts the two-fold ideas: 1) self-tuning cubic regularization that dynamically mitigates non-convex optimization instabilities; 2) multi-Hessian-vector product evaluation during conjugate gradient iterations for precise second-order information assimilation. Comprehensive experiments on two industrial HDI datasets demonstrate that the ACRSLF converges faster and achieves higher representation accuracy than the advancing optimizer-based LFA models.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

高维数据 ACRSLF模型 数据建模 优化算法 LFA模型
相关文章