cs.AI updates on arXiv.org 07月08日 13:53
Truth, Trust, and Trouble: Medical AI on the Edge
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出使用超过1000个健康问题的数据集,对LLM在医疗问答领域的准确性、实用性和安全性进行评估,发现不同模型在事实可靠性和安全性之间存在权衡。

arXiv:2507.02983v1 Announce Type: cross Abstract: Large Language Models (LLMs) hold significant promise for transforming digital health by enabling automated medical question answering. However, ensuring these models meet critical industry standards for factual accuracy, usefulness, and safety remains a challenge, especially for open-source solutions. We present a rigorous benchmarking framework using a dataset of over 1,000 health questions. We assess model performance across honesty, helpfulness, and harmlessness. Our results highlight trade-offs between factual reliability and safety among evaluated models -- Mistral-7B, BioMistral-7B-DARE, and AlpaCare-13B. AlpaCare-13B achieves the highest accuracy (91.7%) and harmlessness (0.92), while domain-specific tuning in BioMistral-7B-DARE boosts safety (0.90) despite its smaller scale. Few-shot prompting improves accuracy from 78% to 85%, and all models show reduced helpfulness on complex queries, highlighting ongoing challenges in clinical QA.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 医疗问答 模型评估 准确性 安全性
相关文章