cs.AI updates on arXiv.org 07月08日 13:53
OBSER: Object-Based Sub-Environment Recognition for Zero-Shot Environmental Inference
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出OBSER框架,一种基于贝叶斯的环境与物体关系识别方法,通过度量学习和自监督学习模型在潜在空间估计子环境的物体分布,实现环境理解。

arXiv:2507.02929v1 Announce Type: cross Abstract: We present the Object-Based Sub-Environment Recognition (OBSER) framework, a novel Bayesian framework that infers three fundamental relationships between sub-environments and their constituent objects. In the OBSER framework, metric and self-supervised learning models estimate the object distributions of sub-environments on the latent space to compute these measures. Both theoretically and empirically, we validate the proposed framework by introducing the ($\epsilon,\delta$) statistically separable (EDS) function which indicates the alignment of the representation. Our framework reliably performs inference in open-world and photorealistic environments and outperforms scene-based methods in chained retrieval tasks. The OBSER framework enables zero-shot recognition of environments to achieve autonomous environment understanding.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

OBSER框架 环境识别 物体关系 贝叶斯方法 自监督学习
相关文章