cs.AI updates on arXiv.org 07月08日 12:34
Towards Human-in-the-Loop Onset Detection: A Transfer Learning Approach for Maracatu
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨在具有复杂节奏模式的巴西玛拉卡图传统中,使用迁移学习策略进行音乐起始检测,并对比两种Temporal Convolutional Network架构。通过少量标注片段,对五种传统打击乐器进行微调,显著提升了检测性能。

arXiv:2507.04858v1 Announce Type: cross Abstract: We explore transfer learning strategies for musical onset detection in the Afro-Brazilian Maracatu tradition, which features complex rhythmic patterns that challenge conventional models. We adapt two Temporal Convolutional Network architectures: one pre-trained for onset detection (intra-task) and another for beat tracking (inter-task). Using only 5-second annotated snippets per instrument, we fine-tune these models through layer-wise retraining strategies for five traditional percussion instruments. Our results demonstrate significant improvements over baseline performance, with F1 scores reaching up to 0.998 in the intra-task setting and improvements of over 50 percentage points in best-case scenarios. The cross-task adaptation proves particularly effective for time-keeping instruments, where onsets naturally align with beat positions. The optimal fine-tuning configuration varies by instrument, highlighting the importance of instrument-specific adaptation strategies. This approach addresses the challenges of underrepresented musical traditions, offering an efficient human-in-the-loop methodology that minimizes annotation effort while maximizing performance. Our findings contribute to more inclusive music information retrieval tools applicable beyond Western musical contexts.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

音乐起始检测 迁移学习 玛拉卡图传统
相关文章