cs.AI updates on arXiv.org 07月08日 12:33
LumiCRS: Asymmetric Contrastive Prototype Learning for Long-Tail Conversational Movie Recommendation
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出LumiCRS,通过自适应焦点损失、原型学习和对话增强模块,缓解对话推荐系统中长尾数据失衡问题,显著提高推荐准确性和多样性。

arXiv:2507.04722v1 Announce Type: new Abstract: Conversational recommender systems (CRSs) often suffer from an extreme long-tail distribution of dialogue data, causing a strong bias toward head-frequency blockbusters that sacrifices diversity and exacerbates the cold-start problem. An empirical analysis of DCRS and statistics on the REDIAL corpus show that only 10% of head movies account for nearly half of all mentions, whereas about 70% of tail movies receive merely 26% of the attention. This imbalance gives rise to three critical challenges: head over-fitting, body representation drift, and tail sparsity. To address these issues, we propose LumiCRS, an end-to-end framework that mitigates long-tail imbalance through three mutually reinforcing layers: (i) an Adaptive Comprehensive Focal Loss (ACFL) that dynamically adjusts class weights and focusing factors to curb head over-fitting and reduce popularity bias; (ii) Prototype Learning for Long-Tail Recommendation, which selects semantic, affective, and contextual prototypes to guide clustering and stabilize body and tail representations; and (iii) a GPT-4o-driven prototype-guided dialogue augmentation module that automatically generates diverse long-tail conversational snippets to alleviate tail sparsity and distribution shift. Together, these strategies enable LumiCRS to markedly improve recommendation accuracy, diversity, and fairness: on the REDIAL and INSPIRED benchmarks, LumiCRS boosts Recall@10 and Tail-Recall@10 by 7-15% over fifteen strong baselines, while human evaluations confirm superior fluency, informativeness, and long-tail relevance. These results demonstrate the effectiveness of multi-layer collaboration in building an efficient and fair long-tail conversational recommender.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

对话推荐系统 长尾失衡 LumiCRS 推荐准确度 多样性
相关文章