cs.AI updates on arXiv.org 07月08日 12:33
Agent-Based Detection and Resolution of Incompleteness and Ambiguity in Interactions with Large Language Models
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了如何通过基于Agent的架构增强LLM(大型语言模型)的问答能力。研究重点在于解决问句中可能存在的不完整性和歧义性问题,通过LLM-based的Agent实现转换器。研究者使用了GPT-3.5-Turbo和Llama-4-Scout等LLM,并配备了专门用于检测和解决不完整性与歧义性的Agent,这些Agent以零样本ReAct Agent的形式实现。实验结果表明,引入Agent可以缩短人机交互的长度、提高答案质量,并解释问题中的缺陷。尽管可能会增加LLM的调用次数和延迟,但在测试数据集中,Agent带来的好处大于成本,尤其是在问题缺乏足够上下文的情况下。这表明,基于Agent的方法可以有效利用LLM,构建更强大的问答系统。

💡 现代LLM常被用作解答各种问题的“现代预言机”,但多轮交互可能因上下文信息需要反复澄清而变得繁琐。

🔍 本研究采用基于Agent的架构,增强LLM问答系统的推理能力,重点解决问题中潜在的不完整性和歧义性。

🤖 研究使用了GPT-3.5-Turbo和Llama-4-Scout等LLM,配备了零样本ReAct Agent,用于检测和解决问题中的缺陷。

✅ Agent通过三种操作改进问答流程:分类(判断问题完整性)、解决(处理缺陷)、回答(生成最终答案)。

📈 实验结果显示,Agent能缩短交互长度、提高答案质量,并解释问题缺陷,尽管可能增加延迟,但在大多数情况下,Agent的优势明显。

arXiv:2507.03726v1 Announce Type: new Abstract: Many of us now treat LLMs as modern-day oracles asking it almost any kind of question. However, consulting an LLM does not have to be a single turn activity. But long multi-turn interactions can get tedious if it is simply to clarify contextual information that can be arrived at through reasoning. In this paper, we examine the use of agent-based architecture to bolster LLM-based Question-Answering systems with additional reasoning capabilities. We examine the automatic resolution of potential incompleteness or ambiguities in questions by transducers implemented using LLM-based agents. We focus on several benchmark datasets that are known to contain questions with these deficiencies to varying degrees. We equip different LLMs (GPT-3.5-Turbo and Llama-4-Scout) with agents that act as specialists in detecting and resolving deficiencies of incompleteness and ambiguity. The agents are implemented as zero-shot ReAct agents. Rather than producing an answer in a single step, the model now decides between 3 actions a) classify b) resolve c) answer. Action a) decides if the question is incomplete, ambiguous, or normal. Action b) determines if any deficiencies identified can be resolved. Action c) answers the resolved form of the question. We compare the use of LLMs with and without the use of agents with these components. Our results show benefits of agents with transducer 1) A shortening of the length of interactions with human 2) An improvement in the answer quality and 3) Explainable resolution of deficiencies in the question. On the negative side we find while it may result in additional LLM invocations and in some cases, increased latency. But on tested datasets, the benefits outweigh the costs except when questions already have sufficient context. Suggesting the agent-based approach could be a useful mechanism to harness the power of LLMs to develop more robust QA systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM Agent 问答系统 推理能力
相关文章