cs.AI updates on arXiv.org 07月08日 12:33
Disambiguation-Centric Finetuning Makes Enterprise Tool-Calling LLMs More Realistic and Less Risky
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为DiaFORGE的对话框架,旨在解决大型语言模型在企业API调用中常见的问题,通过合成多轮对话、模型微调和动态评估等方法,显著提高了工具调用的成功率。

arXiv:2507.03336v1 Announce Type: new Abstract: Large language models (LLMs) are increasingly tasked with invoking enterprise APIs, yet they routinely falter when near-duplicate tools vie for the same user intent or when required arguments are left underspecified. We introduce DiaFORGE (Dialogue Framework for Organic Response Generation & Evaluation), a disambiguation-centric, three-stage pipeline that (i) synthesizes persona-driven, multi-turn dialogues in which the assistant must distinguish among highly similar tools, (ii) performs supervised fine-tuning of open-source models with reasoning traces across 3B - 70B parameters, and (iii) evaluates real-world readiness via a dynamic suite that redeploys each model in a live agentic loop and reports end-to-end goal completion alongside conventional static metrics. On our dynamic benchmark DiaBENCH, models trained with DiaFORGE raise tool-invocation success by 27 pp over GPT-4o and by 49 pp over Claude-3.5-Sonnet, both under optimized prompting. To spur further research, we release an open corpus of 5000 production-grade enterprise API specifications paired with rigorously validated, disambiguation-focused dialogues, offering a practical blueprint for building reliable, enterprise-ready tool-calling agents.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 企业API DiaFORGE 对话框架 模型微调
相关文章