cs.AI updates on arXiv.org 07月08日 12:33
NDAI-NeuroMAP: A Neuroscience-Specific Embedding Model for Domain-Specific Retrieval
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了NDAI-NeuroMAP,首个针对神经科学领域的密集向量嵌入模型,通过精心构建的领域特定训练语料库和复杂微调方法,显著提升了神经科学信息检索的准确性。

arXiv:2507.03329v1 Announce Type: new Abstract: We present NDAI-NeuroMAP, the first neuroscience-domain-specific dense vector embedding model engineered for high-precision information retrieval tasks. Our methodology encompasses the curation of an extensive domain-specific training corpus comprising 500,000 carefully constructed triplets (query-positive-negative configurations), augmented with 250,000 neuroscience-specific definitional entries and 250,000 structured knowledge-graph triplets derived from authoritative neurological ontologies. We employ a sophisticated fine-tuning approach utilizing the FremyCompany/BioLORD-2023 foundation model, implementing a multi-objective optimization framework combining contrastive learning with triplet-based metric learning paradigms. Comprehensive evaluation on a held-out test dataset comprising approximately 24,000 neuroscience-specific queries demonstrates substantial performance improvements over state-of-the-art general-purpose and biomedical embedding models. These empirical findings underscore the critical importance of domain-specific embedding architectures for neuroscience-oriented RAG systems and related clinical natural language processing applications.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

NDAI-NeuroMAP 神经科学 信息检索 向量嵌入 模型评估
相关文章