cs.AI updates on arXiv.org 07月04日
Kernel Density Bayesian Inverse Reinforcement Learning
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种基于核密度估计的贝叶斯逆强化学习(KD-BIRL)方法,通过结合训练任务数据,有效提升临床数据逆强化学习性能,并提供了后验收敛的理论保证。

arXiv:2303.06827v4 Announce Type: replace-cross Abstract: Inverse reinforcement learning (IRL) methods infer an agent's reward function using demonstrations of expert behavior. A Bayesian IRL approach models a distribution over candidate reward functions, capturing a degree of uncertainty in the inferred reward function. This is critical in some applications, such as those involving clinical data. Typically, Bayesian IRL algorithms require large demonstration datasets, which may not be available in practice. In this work, we incorporate existing domain-specific data to achieve better posterior concentration rates. We study a common setting in clinical and biological applications where we have access to expert demonstrations and known reward functions for a set of training tasks. Our aim is to learn the reward function of a new test task given limited expert demonstrations. Existing Bayesian IRL methods impose restrictions on the form of input data, thus limiting the incorporation of training task data. To better leverage information from training tasks, we introduce kernel density Bayesian inverse reinforcement learning (KD-BIRL). Our approach employs a conditional kernel density estimator, which uses the known reward functions of the training tasks to improve the likelihood estimation across a range of reward functions and demonstration samples. Our empirical results highlight KD-BIRL's faster concentration rate in comparison to baselines, particularly in low test task expert demonstration data regimes. Additionally, we are the first to provide theoretical guarantees of posterior concentration for a Bayesian IRL algorithm. Taken together, this work introduces a principled and theoretically grounded framework that enables Bayesian IRL to be applied across a variety of domains.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

逆强化学习 贝叶斯方法 核密度估计
相关文章