cs.AI updates on arXiv.org 07月04日 12:08
What Neuroscience Can Teach AI About Learning in Continuously Changing Environments
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了AI持续学习与神经科学的交叉,分析了动物适应环境的能力,提出从神经科学中汲取经验以提升AI在现实世界中的应用。

arXiv:2507.02103v1 Announce Type: new Abstract: Modern AI models, such as large language models, are usually trained once on a huge corpus of data, potentially fine-tuned for a specific task, and then deployed with fixed parameters. Their training is costly, slow, and gradual, requiring billions of repetitions. In stark contrast, animals continuously adapt to the ever-changing contingencies in their environments. This is particularly important for social species, where behavioral policies and reward outcomes may frequently change in interaction with peers. The underlying computational processes are often marked by rapid shifts in an animal's behaviour and rather sudden transitions in neuronal population activity. Such computational capacities are of growing importance for AI systems operating in the real world, like those guiding robots or autonomous vehicles, or for agentic AI interacting with humans online. Can AI learn from neuroscience? This Perspective explores this question, integrating the literature on continual and in-context learning in AI with the neuroscience of learning on behavioral tasks with shifting rules, reward probabilities, or outcomes. We will outline an agenda for how specifically insights from neuroscience may inform current developments in AI in this area, and - vice versa - what neuroscience may learn from AI, contributing to the evolving field of NeuroAI.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI学习 神经科学 持续学习
相关文章