cs.AI updates on arXiv.org 07月04日 12:08
Do Role-Playing Agents Practice What They Preach? Belief-Behavior Consistency in LLM-Based Simulations of Human Trust
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究LLM角色扮演输出的一致性,建立评估框架,分析信念与行为差异,探讨如何提高LLM在行为研究中的应用。

arXiv:2507.02197v1 Announce Type: new Abstract: As LLMs are increasingly studied as role-playing agents to generate synthetic data for human behavioral research, ensuring that their outputs remain coherent with their assigned roles has become a critical concern. In this paper, we investigate how consistently LLM-based role-playing agents' stated beliefs about the behavior of the people they are asked to role-play ("what they say") correspond to their actual behavior during role-play ("how they act"). Specifically, we establish an evaluation framework to rigorously measure how well beliefs obtained by prompting the model can predict simulation outcomes in advance. Using an augmented version of the GenAgents persona bank and the Trust Game (a standard economic game used to quantify players' trust and reciprocity), we introduce a belief-behavior consistency metric to systematically investigate how it is affected by factors such as: (1) the types of beliefs we elicit from LLMs, like expected outcomes of simulations versus task-relevant attributes of individual characters LLMs are asked to simulate; (2) when and how we present LLMs with relevant information about Trust Game; and (3) how far into the future we ask the model to forecast its actions. We also explore how feasible it is to impose a researcher's own theoretical priors in the event that the originally elicited beliefs are misaligned with research objectives. Our results reveal systematic inconsistencies between LLMs' stated (or imposed) beliefs and the outcomes of their role-playing simulation, at both an individual- and population-level. Specifically, we find that, even when models appear to encode plausible beliefs, they may fail to apply them in a consistent way. These findings highlight the need to identify how and when LLMs' stated beliefs align with their simulated behavior, allowing researchers to use LLM-based agents appropriately in behavioral studies.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 角色扮演 一致性 行为研究 信念预测
相关文章