cs.AI updates on arXiv.org 07月03日 12:07
Beyond Black-Box AI: Interpretable Hybrid Systems for Dementia Care
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了大型语言模型在医疗诊断中的局限性,指出其在临床应用中的不足,并提出未来研究方向,强调解释性AI和神经符号AI的重要性。

arXiv:2507.01282v1 Announce Type: new Abstract: The recent boom of large language models (LLMs) has re-ignited the hope that artificial intelligence (AI) systems could aid medical diagnosis. Yet despite dazzling benchmark scores, LLM assistants have yet to deliver measurable improvements at the bedside. This scoping review aims to highlight the areas where AI is limited to make practical contributions in the clinical setting, specifically in dementia diagnosis and care. Standalone machine-learning models excel at pattern recognition but seldom provide actionable, interpretable guidance, eroding clinician trust. Adjacent use of LLMs by physicians did not result in better diagnostic accuracy or speed. Key limitations trace to the data-driven paradigm: black-box outputs which lack transparency, vulnerability to hallucinations, and weak causal reasoning. Hybrid approaches that combine statistical learning with expert rule-based knowledge, and involve clinicians throughout the process help bring back interpretability. They also fit better with existing clinical workflows, as seen in examples like PEIRS and ATHENA-CDS. Future decision-support should prioritise explanatory coherence by linking predictions to clinically meaningful causes. This can be done through neuro-symbolic or hybrid AI that combines the language ability of LLMs with human causal expertise. AI researchers have addressed this direction, with explainable AI and neuro-symbolic AI being the next logical steps in further advancement in AI. However, they are still based on data-driven knowledge integration instead of human-in-the-loop approaches. Future research should measure success not only by accuracy but by improvements in clinician understanding, workflow fit, and patient outcomes. A better understanding of what helps improve human-computer interactions is greatly needed for AI systems to become part of clinical practice.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI辅助医疗 诊断局限性 解释性AI 神经符号AI
相关文章