cs.AI updates on arXiv.org 8小时前
Mixture of Reasonings: Teach Large Language Models to Reason with Adaptive Strategies
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出MoR框架,将多样化推理策略嵌入LLM,实现无需外部提示的自主、任务自适应推理。实验表明,MoR显著提升LLM性能,消除特定任务提示需求,为通用推理提供解决方案。

arXiv:2507.00606v1 Announce Type: cross Abstract: Large language models (LLMs) excel in complex tasks through advanced prompting techniques like Chain-of-Thought (CoT) and Tree-of-Thought (ToT), but their reliance on manually crafted, task-specific prompts limits adaptability and efficiency. We introduce Mixture of Reasoning (MoR), a training framework that embeds diverse reasoning strategies into LLMs for autonomous, task-adaptive reasoning without external prompt engineering. MoR has two phases: Thought Generation, creating reasoning chain templates with models like GPT-4o, and SFT Dataset Construction, pairing templates with benchmark datasets for supervised fine-tuning.Our experiments show that MoR significantly enhances performance, with MoR150 achieving 0.730 (2.2% improvement) using CoT prompting and 0.734 (13.5% improvement) compared to baselines. MoR eliminates the need for task-specific prompts, offering a generalizable solution for robust reasoning across diverse tasks.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 推理能力 MoR框架 自适应推理 性能提升
相关文章