cs.AI updates on arXiv.org 10小时前
TUM-MiKaNi at SemEval-2025 Task 3: Towards Multilingual and Knowledge-Aware Non-factual Hallucination Identification
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种针对LLM幻觉问题的多语言检测系统,结合事实核查与BERT模型,在多个语言上取得良好效果,有助于提高LLM输出质量和应用范围。

arXiv:2507.00579v1 Announce Type: cross Abstract: Hallucinations are one of the major problems of LLMs, hindering their trustworthiness and deployment to wider use cases. However, most of the research on hallucinations focuses on English data, neglecting the multilingual nature of LLMs. This paper describes our submission to the SemEval-2025 Task-3 - Mu-SHROOM, the Multilingual Shared-task on Hallucinations and Related Observable Overgeneration Mistakes. We propose a two-part pipeline that combines retrieval-based fact verification against Wikipedia with a BERT-based system fine-tuned to identify common hallucination patterns. Our system achieves competitive results across all languages, reaching top-10 results in eight languages, including English. Moreover, it supports multiple languages beyond the fourteen covered by the shared task. This multilingual hallucination identifier can help to improve LLM outputs and their usefulness in the future.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 幻觉检测 多语言 事实核查 BERT
相关文章