cs.AI updates on arXiv.org 8小时前
Visual Anagrams Reveal Hidden Differences in Holistic Shape Processing Across Vision Models
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出形状评估应关注绝对配置能力,通过Configural Shape Score(CSS)评估模型识别不同类别物体图像的能力,发现高CSS模型依赖长距离交互,提出视觉系统应整合局部纹理和全局形状。

arXiv:2507.00493v1 Announce Type: cross Abstract: Humans are able to recognize objects based on both local texture cues and the configuration of object parts, yet contemporary vision models primarily harvest local texture cues, yielding brittle, non-compositional features. Work on shape-vs-texture bias has pitted shape and texture representations in opposition, measuring shape relative to texture, ignoring the possibility that models (and humans) can simultaneously rely on both types of cues, and obscuring the absolute quality of both types of representation. We therefore recast shape evaluation as a matter of absolute configural competence, operationalized by the Configural Shape Score (CSS), which (i) measures the ability to recognize both images in Object-Anagram pairs that preserve local texture while permuting global part arrangement to depict different object categories. Across 86 convolutional, transformer, and hybrid models, CSS (ii) uncovers a broad spectrum of configural sensitivity with fully self-supervised and language-aligned transformers -- exemplified by DINOv2, SigLIP2 and EVA-CLIP -- occupying the top end of the CSS spectrum. Mechanistic probes reveal that (iii) high-CSS networks depend on long-range interactions: radius-controlled attention masks abolish performance showing a distinctive U-shaped integration profile, and representational-similarity analyses expose a mid-depth transition from local to global coding. A BagNet control remains at chance (iv), ruling out "border-hacking" strategies. Finally, (v) we show that configural shape score also predicts other shape-dependent evals. Overall, we propose that the path toward truly robust, generalizable, and human-like vision systems may not lie in forcing an artificial choice between shape and texture, but rather in architectural and learning frameworks that seamlessly integrate both local-texture and global configural shape.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

视觉模型 形状评估 纹理整合 Configural Shape Score 长距离交互
相关文章