cs.AI updates on arXiv.org 07月02日 12:03
Control-Optimized Deep Reinforcement Learning for Artificially Intelligent Autonomous Systems
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种控制优化的深度强化学习框架,以解决行动执行偏差问题,提高实际控制信号与预期结果的一致性,增强机器学习与AI的决策鲁棒性。

arXiv:2507.00268v1 Announce Type: cross Abstract: Deep reinforcement learning (DRL) has become a powerful tool for complex decision-making in machine learning and AI. However, traditional methods often assume perfect action execution, overlooking the uncertainties and deviations between an agent's selected actions and the actual system response. In real-world applications, such as robotics, mechatronics, and communication networks, execution mismatches arising from system dynamics, hardware constraints, and latency can significantly degrade performance. This work advances AI by developing a novel control-optimized DRL framework that explicitly models and compensates for action execution mismatches, a challenge largely overlooked in existing methods. Our approach establishes a structured two-stage process: determining the desired action and selecting the appropriate control signal to ensure proper execution. It trains the agent while accounting for action mismatches and controller corrections. By incorporating these factors into the training process, the AI agent optimizes the desired action with respect to both the actual control signal and the intended outcome, explicitly considering execution errors. This approach enhances robustness, ensuring that decision-making remains effective under real-world uncertainties. Our approach offers a substantial advancement for engineering practice by bridging the gap between idealized learning and real-world implementation. It equips intelligent agents operating in engineering environments with the ability to anticipate and adjust for actuation errors and system disturbances during training. We evaluate the framework in five widely used open-source mechanical simulation environments we restructured and developed to reflect real-world operating conditions, showcasing its robustness against uncertainties and offering a highly practical and efficient solution for control-oriented applications.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度强化学习 控制优化 执行误差 AI决策 工程实践
相关文章