cs.AI updates on arXiv.org 07月02日 12:03
Interpretable AI for Time-Series: Multi-Model Heatmap Fusion with Global Attention and NLP-Generated Explanations
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种新颖框架,通过融合ResNet和2D Transformer生成的热图,解决现有可解释性方法中空间-时间不匹配的问题。实验表明,该框架在医疗和工业监测等领域取得显著成效,为透明、时间感知决策提供可扩展解决方案。

arXiv:2507.00234v1 Announce Type: cross Abstract: In this paper, we present a novel framework for enhancing model interpretability by integrating heatmaps produced separately by ResNet and a restructured 2D Transformer with globally weighted input saliency. We address the critical problem of spatial-temporal misalignment in existing interpretability methods, where convolutional networks fail to capture global context and Transformers lack localized precision - a limitation that impedes actionable insights in safety-critical domains like healthcare and industrial monitoring. Our method merges gradient-weighted activation maps (ResNet) and Transformer attention rollout into a unified visualization, achieving full spatial-temporal alignment while preserving real-time performance. Empirical evaluations on clinical (ECG arrhythmia detection) and industrial (energy consumption prediction) datasets demonstrate significant improvements: the hybrid framework achieves 94.1% accuracy (F1 0.93) on the PhysioNet dataset and reduces regression error to RMSE = 0.28 kWh (R2 = 0.95) on the UCI Energy Appliance dataset-outperforming standalone ResNet, Transformer, and InceptionTime baselines by 3.8-12.4%. An NLP module translates fused heatmaps into domain-specific narratives (e.g., "Elevated ST-segment between 2-4 seconds suggests myocardial ischemia"), validated via BLEU-4 (0.586) and ROUGE-L (0.650) scores. By formalizing interpretability as causal fidelity and spatial-temporal alignment, our approach bridges the gap between technical outputs and stakeholder understanding, offering a scalable solution for transparent, time-aware decision-making.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

模型可解释性 ResNet Transformer 热图融合 时空对齐
相关文章