掘金 人工智能 前天 08:53
极大似然估计:频率学派与贝叶斯学派的碰撞与融合
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文深入探讨了统计学中两大流派——频率学派和贝叶斯学派在极大似然估计中的应用。文章通过对比两种学派的理论基础、实现方式以及在不同数据场景下的优势,揭示了它们在参数估计中的差异。频率学派侧重于数据本身,适用于大数据量;贝叶斯学派则结合先验知识,更适合小样本数据。通过实际代码示例,文章清晰展示了两种方法的应用,并为读者提供了选择合适估计方法的参考。

💡 频率学派的核心思想是:选择使观测数据出现概率(似然函数)最大的参数值。它在数据量较大时表现出色,因为大量数据能更好地反映总体特性,减少估计偏差。例如,使用scikit-learn的GaussianNB(朴素贝叶斯分类器)可以实现频率学派的极大似然估计,适用于估计鸢尾花数据集的花瓣长度分布参数。

💡 贝叶斯学派的核心方法是结合先验分布和似然函数,利用贝叶斯定理更新参数的后验分布。这种方法在数据量较小时具有优势,因为先验知识可以提供额外的约束,改善估计结果。BayesianRidge模型是scikit-learn中贝叶斯线性回归的实现,通过结合先验分布和数据来估计参数,尤其适用于小样本数据。

💡 频率学派与贝叶斯学派对待参数的态度截然不同:频率学派认为参数是固定的,数据是随机的;贝叶斯学派则认为参数本身也是随机的,具有先验分布。这种差异导致了它们在极大似然估计中的不同实现方式和应用场景。频率学派无需先验知识,结果稳定;贝叶斯学派考虑先验信息,提供不确定性估计。

在统计学的世界里,参数估计一直是数据分析的核心任务之一。

极大似然估计MLE)作为一种经典的参数估计方法,被广泛应用于各种领域。

然而,极大似然估计并非只有一种实现方式,它在频率学派贝叶斯学派中有着不同的理论基础和应用场景。

本文将探讨这两种学派的区别,并通过实际代码示例展示它们在极大似然估计中的应用及各自的优势。

1. 频率学派

极大似然估计频率学派的核心方法之一。

它的基本思想是:选择一个参数值,使得观测数据出现的概率(即似然函数)最大。

数学上,我们通常通过最大化似然函数L(θx)L(\theta|x)来估计参数\theta\

似然函数表示在给定参数θ\theta的情况下,观测数据xx出现的概率。

频率学派极大似然估计在以下场景中表现尤为出色:

频率学派的极大似然估计可以通过scikit-learnGaussianNB(朴素贝叶斯分类器)来实现。

虽然GaussianNB是一个分类器,但它的核心思想基于频率学派的极大似然估计。

下面,我们以经典的鸢尾花数据集(Iris)为例,假设我们的任务是估计花瓣长度的分布参数。

from sklearn.metrics import accuracy_scorefrom sklearn.datasets import load_irisfrom sklearn.naive_bayes import GaussianNBfrom sklearn.model_selection import train_test_split# 加载鸢尾花数据集iris = load_iris()X = iris.datay = iris.target# 划分训练集和测试集X_train, X_test, y_train, y_test = train_test_split(    X, y, test_size=0.3, random_state=42)# 使用 GaussianNB 进行训练gnb = GaussianNB()gnb.fit(X_train, y_train)# 输出参数估计结果y_pred = gnb.predict(X_test)print(f"极大似然估计的准确率:{accuracy_score(y_test, y_pred):.2f}")## 输出结果:# 极大似然估计的准确率:0.98

2. 贝叶斯学派

贝叶斯估计贝叶斯学派的核心方法。

它通过结合先验分布似然函数,利用贝叶斯定理更新参数的后验分布

数学上,后验分布p(θx)p(\theta|x)可以表示为:

p(θx)L(θx)×p(θ)p(\theta|x)\propto L(\theta|x)\times p(\theta)

其中,L(θx)L(\theta|x)是似然函数,p(θ)p(\theta)是参数的先验分布

贝叶斯估计在以下场景中具有独特的优势:

贝叶斯学派的估计可以通过scikit-learnBayesianRidge模型来实现。

BayesianRidge是一个贝叶斯线性回归模型,它通过结合先验分布和数据来估计参数。

from sklearn.linear_model import BayesianRidgefrom sklearn.datasets import make_regression# 生成小样本数据X, y = make_regression(n_samples=10, n_features=1, noise=0.1)# 使用 BayesianRidge 进行训练bayes_ridge = BayesianRidge()bayes_ridge.fit(X, y)# 输出参数估计结果print("估计的系数:", bayes_ridge.coef_)print("估计的截距:", bayes_ridge.intercept_)## 输出结果:'''估计的系数: [17.74985777]估计的截距: -0.032768905709350094'''

运行上述代码后,我们得到了回归系数截距的估计值。

由于数据量较小,贝叶斯学派的估计通过引入先验分布,能够更好地利用有限的数据,从而提供更可靠的估计结果。

这体现了贝叶斯学派在小样本数据中的优势。

3. 两者比较

频率学派贝叶斯学派作为统计学中两大主要流派,在对待参数估计问题上有着截然不同的观点。

频率学派认为,参数是固定的,但未知的,数据是随机的,通过对数据的观察和分析,我们可以推断出参数的值。

在这种观点下,参数是一个确定的量,而数据的随机性决定了我们对参数估计的不确定性。

贝叶斯学派则认为,参数本身也是随机的,它有一个先验分布。通过结合先验知识和观测数据,我们可以通过贝叶斯定理更新参数的后验分布

在这种观点下,参数的不确定性不仅来源于数据的随机性,还来源于我们对参数的先验假设

这两种观点的差异,导致了它们在极大似然估计中的不同实现方式和应用场景。

频率学派的优势在于:

贝叶斯学派的优势在于:

4. 总结

本文通过对比频率学派和贝叶斯学派的理论基础和实际应用,展示了它们在极大似然估计中的不同特点和优势。

频率学派的方法在大数据量下表现出色,能够提供稳定和准确的估计结果;

贝叶斯学派的方法则在小样本数据中更具优势,通过引入先验知识,能够更好地利用有限的数据。

在实际应用中,选择哪种方法取决于具体问题的背景和数据的特点。

如果数据量较大且没有先验信息频率学派的方法可能是更好的选择;

如果数据量较小有可靠的先验知识贝叶斯学派的方法则可能更适合。

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

极大似然估计 频率学派 贝叶斯学派 参数估计 统计学
相关文章