MarkTechPost@AI 04月11日 19:00
Nvidia Released Llama-3.1-Nemotron-Ultra-253B-v1: A State-of-the-Art AI Model Balancing Massive Scale, Reasoning Power, and Efficient Deployment for Enterprise Innovation
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

英伟达发布了 Llama-3.1-Nemotron-Ultra-253B-v1,一款专为企业应用设计的大型语言模型,旨在平衡计算成本、性能、可扩展性和适应性。该模型基于 Meta 的 Llama-3.1-405B-Instruct 架构,拥有强大的推理能力和高效的架构设计,支持广泛的任务,包括工具使用、检索增强生成(RAG)和多轮对话。通过创新的架构优化,如跳跃注意力机制和 FFN 融合技术,该模型在保持高性能的同时,降低了推理时间和数据中心成本。

💡 **架构创新与效率**:Llama-3.1-Nemotron-Ultra-253B-v1 采用了非重复块和多种优化策略,如跳跃注意力机制,选择性地跳过某些层的注意力模块或用更简单的线性层替代,以及 FFN 融合技术,将 FFN 序列合并为更少、更宽的层,从而显著减少推理时间。

📖 **强大的上下文理解能力**:该模型支持 128K 令牌上下文窗口,能够处理更长的文本输入,适用于高级 RAG 系统和多文档分析,增强了其理解和推理能力。

🏢 **企业级部署友好性**:Nemotron Ultra 能够将推理工作负载适配到单个 8xH100 节点上,降低了数据中心成本,提高了企业开发者的可访问性,使其更易于在商业环境中部署。

⚙️ **多阶段微调**:模型经过了多阶段的训练,包括在代码生成、数学、聊天、推理和工具调用等任务上的监督微调,以及使用 GRPO(Group Relative Policy Optimization)的强化学习(RL),以优化其指令遵循和对话能力,确保模型在基准测试中表现出色,并与人类偏好保持一致。

📜 **开放许可与社区支持**:该模型采用 NVIDIA 开放模型许可,支持灵活的部署,并鼓励社区协作采用。同时,该模型的发布伴随着 Llama-3.1-Nemotron-Nano-8B-v1 和 Llama-3.3-Nemotron-Super-49B-v1 等其他模型,共同构建了更完善的 AI 模型家族。

As AI adoption increases in digital infrastructure, enterprises and developers face mounting pressure to balance computational costs with performance, scalability, and adaptability. The rapid advancement of large language models (LLMs) has opened new frontiers in natural language understanding, reasoning, and conversational AI. Still, their sheer size and complexity often introduce inefficiencies that inhibit deployment at scale. In this dynamic landscape, the question remains: Can AI architectures evolve to sustain high performance without ballooning compute overhead or financial costs? Enter the next chapter in NVIDIA’s innovation saga, a solution that seeks to optimize this tradeoff while expanding AI’s functional boundaries.

NVIDIA released the Llama-3.1-Nemotron-Ultra-253B-v1, a 253-billion parameter language model representing a significant leap in reasoning capabilities, architecture efficiency, and production readiness. This model is part of the broader Llama Nemotron Collection and is directly derived from Meta’s Llama-3.1-405B-Instruct architecture. The two other small models, a part of this series, are Llama-3.1-Nemotron-Nano-8B-v1 and Llama-3.3-Nemotron-Super-49B-v1. Designed for commercial and enterprise use, Nemotron Ultra is engineered to support tasks ranging from tool use and retrieval-augmented generation (RAG) to multi-turn dialogue and complex instruction-following.

The model’s core is a dense decoder-only transformer structure tuned using a specialized Neural Architecture Search (NAS) algorithm. Unlike traditional transformer models, the architecture employs non-repetitive blocks and various optimization strategies. Among these innovations is the skip attention mechanism, where attention modules in certain layers are either skipped entirely or replaced with simpler linear layers. Also, the Feedforward Network (FFN) Fusion technique merges sequences of FFNs into fewer, wider layers, significantly reducing inference time while maintaining performance.

This finely tuned model supports a 128K token context window, allowing it to ingest and reason over extended textual inputs, making it suitable for advanced RAG systems and multi-document analysis. Moreover, Nemotron Ultra fits inference workloads onto a single 8xH100 node, which marks a milestone in deployment efficiency. Such compact inference capability dramatically reduces data center costs and enhances accessibility for enterprise developers.

NVIDIA’s rigorous multi-phase post-training process includes supervised fine-tuning on tasks like code generation, math, chat, reasoning, and tool calling. This is followed by reinforcement learning (RL) using Group Relative Policy Optimization (GRPO), an algorithm tailored to fine-tune the model’s instruction-following and conversation capabilities. These additional training layers ensure that the model performs well on benchmarks and aligns with human preferences during interactive sessions.

Built with production readiness in mind, Nemotron Ultra is governed by the NVIDIA Open Model License. Its release has been accompanied by other sibling models in the same family, including Llama-3.1-Nemotron-Nano-8B-v1 and Llama-3.3-Nemotron-Super-49B-v1. The release window, between November 2024 and April 2025, ensured the model leveraged training data up until the end of 2023, making it relatively up-to-date in its knowledge and context.

Some of the Key Takeaways from the release of Llama-3.1-Nemotron-Ultra-253B-v1 include:


Check out the Model on Hugging Face. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 85k+ ML SubReddit.

The post Nvidia Released Llama-3.1-Nemotron-Ultra-253B-v1: A State-of-the-Art AI Model Balancing Massive Scale, Reasoning Power, and Efficient Deployment for Enterprise Innovation appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

英伟达 LLM Llama-3.1 AI 模型
相关文章