36kr 19小时前
AI智能体(五):工作流与智能体
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了人工智能领域中AI工作流与AI智能体的差异。通过分析Anthropic公司的观点,文章阐述了工作流作为预定义代码路径的系统,与智能体自主决策和工具使用的区别。文章还介绍了增强型LLM、提示链式调用、并行化处理和路由机制等工作流类型,并提供了实际应用案例和框架。理解这些概念有助于更有效地利用AI技术,构建更灵活、高效的AI应用。

💡 智能体与工作流的核心区别在于自主性。智能体能够自主决策、使用工具,而工作流则依赖预定义代码路径。

🛠️ 增强型LLM是智能系统的基础模块,具备检索、工具调用和记忆等增强能力,能够主动运用这些能力来完成任务。

🔗 提示链式调用将任务分解为一系列步骤,每个LLM调用处理前一步的输出。适用于任务可清晰拆解为固定子任务的场景。

🚀 并行化处理通过分块处理或投票机制,实现多个LLM协同工作,适用于可并行加速或需要多视角分析的场景。

🚦 路由机制对输入进行分类并定向至后续任务,实现关注点分离和更专业的提示词,适用于存在明显分类边界的复杂任务。

神译局是36氪旗下编译团队,关注科技、商业、职场、生活等领域,重点介绍国外的新技术、新观点、新风向。

编者按:2025年是AI智能体元年。本系列文章旨在介绍AI智能体的概念、类型、原理、架构、开发等,为进一步了解AI智能体提供入门知识。本文为系列文章的第五篇,文章来自编译。

在人工智能(AI)不断发展的背景下,理解AI工作流与AI智能体之间的区别对于有效利用这些技术至关重要。本文深入探讨AI工作流的类型,解析智能体的概念,并聚焦二者之间的核心差异。

1. 智能体与工作流

智能体可以有多种定义方式。部分用户将其定义为完全自主的系统,能长期独立运行并使用多种工具完成复杂任务;另一些人则用这一术语指代遵循预定义工作流的规范性实现。

Anthropic公司将这些统称为智能系统,但对工作流和智能体做了关键区分:

以烹饪场景作为类比:

工作流像严格按食谱步骤操作的烹饪。

智能体则像厨师,会根据食材和口味现场决定如何烹制菜肴。

1.1 何时使用(或不使用)智能体

开发基于LLM的应用时,应从最简单的方案入手,仅在必要时引入复杂性。某些情况下,可能需完全避免使用智能系统。这类系统的任务性能提升常以更高延迟和成本为代价,因此需评估这种权衡是否合理。

当需要更高复杂度时,工作流可为结构明确的任务提供可预测性和一致性,而智能体更适合需要灵活性和大模型驱动决策的场景。不过对于多数应用,通过检索和上下文示例来优化单个LLM调用通常已足够。

1.2 框架的适用场景与使用方法

现有的很多框架都可以简化智能系统的实现,比方说:

这些框架简化了调用LLM、定义解析工具、串联调用等底层操作,便于快速搭建智能系统。但这些框架常常会引入额外的抽象层,可能会掩盖底层提示词与响应逻辑,增加调试难度,也可能在不必要场景下怂恿过度的复杂化。

2. 核心构建模块

本节将探讨实际生产环境中智能系统的常见模式。从基础模块——增强型LLM开始,逐步增加复杂度,从简单组合工作流延伸至自主智能体。

2.1 环境配置

可使用任何支持结构化输出和工具调用的聊天模型。以下演示如何安装依赖包、设置API密钥并测试Anthropic模型的工具调用功能:

import os

import getpass

from langchain_anthropic import ChatAnthropic

 

def _set_env(var: str):

    if not os.environ.get(var):

        os.environ[var] = getpass.getpass(f"{var}: ")

_set_env("ANTHROPIC_API_KEY")

llm = ChatAnthropic(model="claude-3-5-sonnet-latest")

2.2 增强型LLM

智能系统的基础模块是具备检索、工具调用和记忆等增强能力的LLM。当前模型能主动运用这些能力:生成搜索查询、选择工具、决定保留哪些信息。

# Schema for structured output

from pydantic import BaseModel, Field

 

class SearchQuery(BaseModel):

    search_query: str = Field(None, description="Query that is optimized web search.")

    justification: str = Field(

        None, description="Why this query is relevant to the user's request."

    )

  

# Augment the LLM with schema for structured output

structured_llm = llm.with_structured_output(SearchQuery)

 

# Invoke the augmented LLM

output = structured_llm.invoke("How does Calcium CT score relate to high cholesterol?")

 

# Define a tool

def multiply(a: int, b: int) -> int:

    return a * b

 # Augment the LLM with tools

llm_with_tools = llm.bind_tools([multiply])

 

# Invoke the LLM with input that triggers the tool call

msg = llm_with_tools.invoke("What is 2 times 3?")

 # Get the tool call

msg.tool_calls

3. 工作流

3.1 提示链式调用

在提示链式调用中,每个LLM调用处理前一个调用的输出结果。

Anthropic博客指出:

提示链式调用是将任务分解为一系列步骤,每个LLM调用处理前一步的输出。开发者可在中间步骤添加程序化检查(如下图的"门控"机制),确保流程正确推进。

适用场景:当任务能清晰拆解为固定子任务时,此工作流最为理想。其核心目标是通过降低每个LLM调用的难度,以稍高的延迟换取更高准确性。

典型案例:

from typing_extensions import TypedDict

from langgraph.graph import StateGraph, START, END

from IPython.display import Image, display

 

# Graph state

class State(TypedDict):

    topic: str

    joke: str

    improved_joke: str

    final_joke: str

  

# Nodes

def generate_joke(state: State):

    """First LLM call to generate initial joke"""

     msg = llm.invoke(f"Write a short joke about {state['topic']}")

    return {"joke": msg.content}

  

def check_punchline(state: State):

    """Gate function to check if the joke has a punchline"""

     # Simple check - does the joke contain "?" or "!"

    if "?" in state["joke"] or "!" in state["joke"]:

        return "Fail"

    return "Pass"

  

def improve_joke(state: State):

    """Second LLM call to improve the joke"""

     msg = llm.invoke(f"Make this joke funnier by adding wordplay: {state['joke']}")

    return {"improved_joke": msg.content}

  

def polish_joke(state: State):

    """Third LLM call for final polish"""

     msg = llm.invoke(f"Add a surprising twist to this joke: {state['improved_joke']}")

    return {"final_joke": msg.content}

  

# Build workflow

workflow = StateGraph(State)

 # Add nodes

workflow.add_node("generate_joke", generate_joke)

workflow.add_node("improve_joke", improve_joke)

workflow.add_node("polish_joke", polish_joke)

 

# Add edges to connect nodes

workflow.add_edge(START, "generate_joke")

workflow.add_conditional_edges(

    "generate_joke", check_punchline, {"Fail": "improve_joke", "Pass": END}

)

workflow.add_edge("improve_joke", "polish_joke")

workflow.add_edge("polish_joke", END)

 

# Compile

chain = workflow.compile()

 

# Show workflow

display(Image(chain.get_graph().draw_mermaid_png()))

 

# Invoke

state = chain.invoke({"topic": "cats"})

print("Initial joke:")

print(state["joke"])

print("\n--- --- ---\n")

if "improved_joke" in state:

    print("Improved joke:")

    print(state["improved_joke"])

    print("\n--- --- ---\n")

 

    print("Final joke:")

    print(state["final_joke"])

else:

    print("Joke failed quality gate - no punchline detected!")

3.2 并行化处理

通过并行化处理,多个LLM可协同完成任务:

LLM可通过两种方式并行工作:

适用场景:

典型案例包括以下几种。

分块处理:

投票机制:

 

# Graph state

class State(TypedDict):

    topic: str

    joke: str

    story: str

    poem: str

    combined_output: str

  

# Nodes

def call_llm_1(state: State):

    """First LLM call to generate initial joke"""

 

    msg = llm.invoke(f"Write a joke about {state['topic']}")

    return {"joke": msg.content}

  

def call_llm_2(state: State):

    """Second LLM call to generate story"""

 

    msg = llm.invoke(f"Write a story about {state['topic']}")

    return {"story": msg.content}

  

def call_llm_3(state: State):

    """Third LLM call to generate poem"""

 

    msg = llm.invoke(f"Write a poem about {state['topic']}")

    return {"poem": msg.content}

  

def aggregator(state: State):

    """Combine the joke and story into a single output"""

 

    combined = f"Here's a story, joke, and poem about {state['topic']}!\n\n"

    combined += f"STORY:\n{state['story']}\n\n"

    combined += f"JOKE:\n{state['joke']}\n\n"

    combined += f"POEM:\n{state['poem']}"

    return {"combined_output": combined}

  

# Build workflow

parallel_builder = StateGraph(State)

 

# Add nodes

parallel_builder.add_node("call_llm_1", call_llm_1)

parallel_builder.add_node("call_llm_2", call_llm_2)

parallel_builder.add_node("call_llm_3", call_llm_3)

parallel_builder.add_node("aggregator", aggregator)

 

# Add edges to connect nodes

parallel_builder.add_edge(START, "call_llm_1")

parallel_builder.add_edge(START, "call_llm_2")

parallel_builder.add_edge(START, "call_llm_3")

parallel_builder.add_edge("call_llm_1", "aggregator")

parallel_builder.add_edge("call_llm_2", "aggregator")

parallel_builder.add_edge("call_llm_3", "aggregator")

parallel_builder.add_edge("aggregator", END)

parallel_workflow = parallel_builder.compile()

 

# Show workflow

display(Image(parallel_workflow.get_graph().draw_mermaid_png()))

 

# Invoke

state = parallel_workflow.invoke({"topic": "cats"})

print(state["combined_output"])

3.3 路由机制

路由机制对输入进行分类并定向至后续任务。Anthropic博客指出:

路由机制对输入进行分类后,将其引导至专门设计的后续任务。这种工作流实现了关注点分离,并能构建更专业的提示词。若无此机制,针对某类输入的优化可能损害其他输入的模型表现。

适用场景:适用于存在明显分类边界且需独立处理的复杂任务,且分类过程(通过LLM或传统分类模型/算法)需足够精准。

典型案例:

from typing_extensions import Literal

from langchain_core.messages import HumanMessage, SystemMessage

  

# Schema for structured output to use as routing logic

class Route(BaseModel):

    step: Literal["poem", "story", "joke"] = Field(

        None, description="The next step in the routing process"

    )

  

# Augment the LLM with schema for structured output

router = llm.with_structured_output(Route)

  

# State

class State(TypedDict):

    input: str

    decision: str

    output: str

  

# Nodes

def llm_call_1(state: State):

    """Write a story"""

 

    result = llm.invoke(state["input"])

    return {"output": result.content}

  

def llm_call_2(state: State):

    """Write a joke"""

 

    result = llm.invoke(state["input"])

    return {"output": result.content}

  

def llm_call_3(state: State):

    """Write a poem"""

 

    result = llm.invoke(state["input"])

    return {"output": result.content}

  

def llm_call_router(state: State):

    """Route the input to the appropriate node"""

 

    # Run the augmented LLM with structured output to serve as routing logic

    decision = router.invoke(

        [

            SystemMessage(

                content="Route the input to story, joke, or poem based on the user's request."

            ),

            HumanMessage(content=state["input"]),

        ]

    )

 

    return {"decision": decision.step}

  

# Conditional edge function to route to the appropriate node

def route_decision(state: State):

    # Return the node name you want to visit next

    if state["decision"] == "story":

        return "llm_call_1"

    elif state["decision"] == "joke":

        return "llm_call_2"

    elif state["decision"] == "poem":

        return "llm_call_3"

  

# Build workflow

router_builder = StateGraph(State)

 

# Add nodes

router_builder.add_node("llm_call_1", llm_call_1)

router_builder.add_node("llm_call_2", llm_call_2)

router_builder.add_node("llm_call_3", llm_call_3)

router_builder.add_node("llm_call_router", llm_call_router)

 

# Add edges to connect nodes

router_builder.add_edge(START, "llm_call_router")

router_builder.add_conditional_edges(

    "llm_call_router",

    route_decision,

    {  # Name returned by route_decision : Name of next node to visit

        "llm_call_1": "llm_call_1",

        "llm_call_2": "llm_call_2",

        "llm_call_3": "llm_call_3",

    },

)

router_builder.add_edge("llm_call_1", END)

router_builder.add_edge("llm_call_2", END)

router_builder.add_edge("llm_call_3", END)

 

# Compile workflow

router_workflow = router_builder.compile()

 

# Show the workflow

display(Image(router_workflow.get_graph().draw_mermaid_png()))

 

# Invoke

state = router_workflow.invoke({"input": "Write me a joke about cats"})

print(state["output"])

3.4 协调器-工作节点模式

在协调器-工作节点模式中,协调器将任务分解并分配给各工作节点执行。Anthropic博客指出:

这种工作流通过中心化LLM动态分解任务,将子任务分配给工作节点LLM,并整合它们的执行结果。

适用场景:适用于子任务无法预知的复杂场景(例如代码修改任务中,需变更的文件数量和各文件的修改方式都取决于具体任务)。尽管拓扑结构相似,但与并行化的核心区别在于灵活性——子任务非预设,而是由协调器根据输入动态决策。

典型案例:

from typing import Annotated, List

import operator

  

# Schema for structured output to use in planning

class Section(BaseModel):

    name: str = Field(

        description="Name for this section of the report.",

    )

    description: str = Field(

        description="Brief overview of the main topics and concepts to be covered in this section.",

    )

  

class Sections(BaseModel):

    sections: List[Section] = Field(

        description="Sections of the report.",

    )

  

# Augment the LLM with schema for structured output

planner = llm.with_structured_output(Sections)

LangGraph如何创建worker

鉴于orchestrator-worker这种工作流很常见,LangGraph已有Send API来予以支持。用户可动态创建worker节点,并给每个节点发送特定输入。每worker都有自己的状态,所有worker的输出均写入到协调器图谱可访问的一个共享的状态key。故协调器可访问所有worker输出,然后可整合成最终输出。

from langgraph.constants import Send

 # Graph state

class State(TypedDict):

    topic: str  # Report topic

    sections: list[Section]  # List of report sections

    completed_sections: Annotated[

        list, operator.add

    ]  # All workers write to this key in parallel

    final_report: str  # Final report

  

# Worker state

class WorkerState(TypedDict):

    section: Section

    completed_sections: Annotated[list, operator.add]

  

# Nodes

def orchestrator(state: State):

    """Orchestrator that generates a plan for the report"""

 

    # Generate queries

    report_sections = planner.invoke(

        [

            SystemMessage(content="Generate a plan for the report."),

            HumanMessage(content=f"Here is the report topic: {state['topic']}"),

        ]

    )

 

    return {"sections": report_sections.sections}

  

def llm_call(state: WorkerState):

    """Worker writes a section of the report"""

 

    # Generate section

    section = llm.invoke(

        [

            SystemMessage(

                content="Write a report section following the provided name and description. Include no preamble for each section. Use markdown formatting."

            ),

            HumanMessage(

                content=f"Here is the section name: {state['section'].name} and description: {state['section'].description}"

            ),

        ]

    )

 

    # Write the updated section to completed sections

    return {"completed_sections": [section.content]}

  

def synthesizer(state: State):

    """Synthesize full report from sections"""

 

    # List of completed sections

    completed_sections = state["completed_sections"]

 

    # Format completed section to str to use as context for final sections

    completed_report_sections = "\n\n---\n\n".join(completed_sections)

 

    return {"final_report": completed_report_sections}

  

# Conditional edge function to create llm_call workers that each write a section of the report

def assign_workers(state: State):

    """Assign a worker to each section in the plan"""

 

    # Kick off section writing in parallel via Send() API

    return [Send("llm_call", {"section": s}) for s in state["sections"]]

  

# Build workflow

orchestrator_worker_builder = StateGraph(State)

 

# Add the nodes

orchestrator_worker_builder.add_node("orchestrator", orchestrator)

orchestrator_worker_builder.add_node("llm_call", llm_call)

orchestrator_worker_builder.add_node("synthesizer", synthesizer)

 

# Add edges to connect nodes

orchestrator_worker_builder.add_edge(START, "orchestrator")

orchestrator_worker_builder.add_conditional_edges(

    "orchestrator", assign_workers, ["llm_call"]

)

orchestrator_worker_builder.add_edge("llm_call", "synthesizer")

orchestrator_worker_builder.add_edge("synthesizer", END)

 

# Compile the workflow

orchestrator_worker = orchestrator_worker_builder.compile()

 

# Show the workflow

display(Image(orchestrator_worker.get_graph().draw_mermaid_png()))

 

# Invoke

state = orchestrator_worker.invoke({"topic": "Create a report on LLM scaling laws"})

 

from IPython.display import Markdown

Markdown(state["final_report"])

3.5 评估器-优化器模式

在评估器-优化器模式中,一个LLM生成响应,另一个LLM在循环中提供评估反馈。

适用场景:当存在明确评估标准且迭代优化能产生显著价值时效果最佳。两个适用标志是:1)人工反馈可明确提升LLM响应质量;2)LLM自身可生成此类反馈。这类似于人类作者润色文档时的迭代过程。

典型案例:

# Graph state

class State(TypedDict):

    joke: str

    topic: str

    feedback: str

    funny_or_not: str

  

# Schema for structured output to use in evaluation

class Feedback(BaseModel):

    grade: Literal["funny", "not funny"] = Field(

        description="Decide if the joke is funny or not.",

    )

    feedback: str = Field(

        description="If the joke is not funny, provide feedback on how to improve it.",

    )

  

# Augment the LLM with schema for structured output

evaluator = llm.with_structured_output(Feedback)

  

# Nodes

def llm_call_generator(state: State):

    """LLM generates a joke"""

 

    if state.get("feedback"):

        msg = llm.invoke(

            f"Write a joke about {state['topic']} but take into account the feedback: {state['feedback']}"

        )

    else:

        msg = llm.invoke(f"Write a joke about {state['topic']}")

    return {"joke": msg.content}

 

 

def llm_call_evaluator(state: State):

    """LLM evaluates the joke"""

 

    grade = evaluator.invoke(f"Grade the joke {state['joke']}")

    return {"funny_or_not": grade.grade, "feedback": grade.feedback}

  

# Conditional edge function to route back to joke generator or end based upon feedback from the evaluator

def route_joke(state: State):

    """Route back to joke generator or end based upon feedback from the evaluator"""

 

    if state["funny_or_not"] == "funny":

        return "Accepted"

    elif state["funny_or_not"] == "not funny":

        return "Rejected + Feedback"

  

# Build workflow

optimizer_builder = StateGraph(State)

 

# Add the nodes

optimizer_builder.add_node("llm_call_generator", llm_call_generator)

optimizer_builder.add_node("llm_call_evaluator", llm_call_evaluator)

 

# Add edges to connect nodes

optimizer_builder.add_edge(START, "llm_call_generator")

optimizer_builder.add_edge("llm_call_generator", "llm_call_evaluator")

optimizer_builder.add_conditional_edges(

    "llm_call_evaluator",

    route_joke,

    {  # Name returned by route_joke : Name of next node to visit

        "Accepted": END,

        "Rejected + Feedback": "llm_call_generator",

    },

)

 

# Compile the workflow

optimizer_workflow = optimizer_builder.compile()

 

# Show the workflow

display(Image(optimizer_workflow.get_graph().draw_mermaid_png()))

 

# Invoke

state = optimizer_workflow.invoke({"topic": "Cats"})

print(state["joke"])

4. 智能体

智能体通常通过循环中的环境反馈(借助工具调用)执行操作的LLM实现。Anthropic博客指出:

智能体能处理复杂任务,但其实现往往简洁——本质上是LLM在循环中基于环境反馈调用工具。因此,工具集的清晰设计和文档说明至关重要。

 

适用场景:

注意事项:

典型案例(来自实际实现):

from langchain_core.tools import tool

  

# Define tools

@tool

def multiply(a: int, b: int) -> int:

    """Multiply a and b.

 

    Args:

        a: first int

        b: second int

    """

    return a * b

  

@tool

def add(a: int, b: int) -> int:

    """Adds a and b.

 

    Args:

        a: first int

        b: second int

    """

    return a + b

  

@tool

def divide(a: int, b: int) -> float:

    """Divide a and b.

 

    Args:

        a: first int

        b: second int

    """

    return a / b

  

# Augment the LLM with tools

tools = [add, multiply, divide]

tools_by_name = {tool.name: tool for tool in tools}

llm_with_tools = llm.bind_tools(tools)

5. 模式组合与定制

AI智能体与智能工作流互为补充,可在复杂场景中整合实现最佳效果:

制造业集成案例:

智能制造系统中:

6. 结论

LLM领域的成功不在于构建最复杂的系统,而在于构建最适合需求的系统:

从简单提示词入手,通过全面评估优化

仅在简单方案不足时引入多步骤智能系统

核心原则:

    设计保持简单

    透明展示规划步骤

    通过详尽文档和测试打磨人机接口

框架使用建议:

框架可加速开发,但生产环境需减少抽象层级,基于基础组件构建。遵循这些原则,可打造兼具强大能力与可靠性、可维护性和用户信任的智能体系统。

延伸阅读:

AI智能体(一):介绍

AI智能体(二):从零开始构建智能体

AI智能体(三):框架

AI智能体(四):类型

译者:boxi。

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI智能体 AI工作流 LLM LangChain Anthropic
相关文章