cs.AI updates on arXiv.org 03月25日
A new approach for encoding code and assisting code understanding
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

一些公司发现GPTs的 autoregressive 范式存在局限性,如缺乏规划、工作记忆等能力。本文通过实证研究证实此观点,并提出新的代码理解范式,将代码编码为具有全局信息记忆的异构图像范式,设计文本到代码编码器模型,该模型通过自监督对比学习实现了对新数据的零样本预测。

📌GPTs的 autoregressive 范式存在多种局限性

📌提出新的代码理解范式,编码为异构图像

📌设计文本到代码编码器模型并应用于任务

📌通过自监督对比学习实现新数据零样本预测

arXiv:2408.00521v2 Announce Type: replace Abstract: Some companies (e.g., Microsoft Research and Google DeepMind) have discovered some of the limitations of GPTs' autoregressive paradigm next-word prediction, manifested in the model's lack of planning, working memory, backtracking, and reasoning skills. GPTs rely on a local and greedy process of generating the next word, without a global understanding of the task or the output. We have confirmed the above limitations through specialized empirical studies of code comprehension. Although GPT-4 is good at producing fluent and coherent text, it cannot handle complex logic and generate new code that hasn't been seen, and it relies too much on the formatting of the prompt to generate the correct code. We propose a new paradigm for code understanding that goes beyond the next-word prediction paradigm, inspired by the successful application of diffusion techniques to image generation (Dalle-2, Sora) and protein structure generation (AlphaFold-3), which have no autoregressive constraints. Instead of encoding the code in a form that mimics natural language, we encode the code as a heterogeneous image paradigm with a memory of global information that mimics both images and protein structures. We then refer to Sora's CLIP upstream text-to-image encoder model to design a text-to-code encoder model that can be applied to various downstream code understanding tasks. The model learns the global understanding of code under the new paradigm heterogeneous image, connects the encoding space of text and code, and encodes the input of text into the vector of code most similar to it. Using self-supervised comparative learning on 456,360 text-code pairs, the model achieved a zero-shot prediction of new data. This work is the basis for future work on code generation using diffusion techniques under a new paradigm to avoid autoregressive limitations.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

GPTs局限性 代码理解范式 文本到代码 自监督学习
相关文章