MarkTechPost@AI 03月14日
A Coding Guide to Build a Multimodal Image Captioning App Using Salesforce BLIP Model, Streamlit, Ngrok, and Hugging Face
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了如何使用Google Colab平台、Salesforce的BLIP模型以及Streamlit,构建一个交互式的多模态图像描述应用程序。多模态模型结合了图像和文本处理能力,在图像描述、视觉问答等AI应用中变得越来越重要。本指南详细讲解了如何进行设置,清晰地解决了常见问题,并演示了如何集成和部署先进的AI解决方案。通过ngrok,可以在Google Colab中安全地托管Streamlit应用,并生成公开URL,方便远程访问和交互。该应用允许用户上传图像,并使用BLIP模型自动生成图像的文字描述。

🖼️ 该应用利用Salesforce的BLIP模型,这是一个强大的多模态模型,能够理解图像内容并生成相应的文本描述。BLIP模型由Hugging Face提供,方便集成到项目中。

🚀 Streamlit用于构建用户界面,允许用户上传图像并查看生成的描述。通过简单的几行代码,即可创建一个交互式的Web应用程序,无需大量的前端开发经验。

🔑 Ngrok用于在Google Colab环境中创建一个公共URL,使得用户可以从任何地方访问该应用程序。这对于共享和测试应用程序非常有用,无需复杂的服务器配置。

In this tutorial, we’ll learn how to build an interactive multimodal image-captioning application using Google’s Colab platform, Salesforce’s powerful BLIP model, and Streamlit for an intuitive web interface. Multimodal models, which combine image and text processing capabilities, have become increasingly important in AI applications, enabling tasks like image captioning, visual question answering, and more. This step-by-step guide ensures a smooth setup, clearly addresses common pitfalls, and demonstrates how to integrate and deploy advanced AI solutions, even without extensive experience.

!pip install transformers torch torchvision streamlit Pillow pyngrok

First we install transformers, torch, torchvision, streamlit, Pillow, pyngrok, all necessary dependencies for building a multimodal image captioning app. It includes Transformers (for BLIP model), Torch & Torchvision (for deep learning and image processing), Streamlit (for creating the UI), Pillow (for handling image files), and pyngrok (for exposing the app online via Ngrok).

%%writefile app.pyimport torchfrom transformers import BlipProcessor, BlipForConditionalGenerationimport streamlit as stfrom PIL import Imagedevice = "cuda" if torch.cuda.is_available() else "cpu"@st.cache_resourcedef load_model():    processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")    model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(device)    return processor, modelprocessor, model = load_model()st.title(" Image Captioning with BLIP")uploaded_file = st.file_uploader("Upload your image:", type=["jpg", "jpeg", "png"])if uploaded_file is not None:    image = Image.open(uploaded_file).convert('RGB')    st.image(image, caption="Uploaded Image", use_column_width=True)    if st.button("Generate Caption"):        inputs = processor(image, return_tensors="pt").to(device)        outputs = model.generate(inputs)        caption = processor.decode(outputs[0], skip_special_tokens=True)        st.markdown(f"###  Caption:** {caption}")

Then we create a Streamlit-based multimodal image captioning app using the BLIP model. It first loads the BLIPProcessor and BLIPForConditionalGeneration from Hugging Face, allowing the model to process images and generate captions. The Streamlit UI enables users to upload an image, displays it, and generates a caption upon clicking a button. The use of @st.cache_resource ensures efficient model loading, and CUDA support is utilized if available for faster processing.

from pyngrok import ngrokNGROK_TOKEN = "use your own NGROK token here"ngrok.set_auth_token(NGROK_TOKEN)public_url = ngrok.connect(8501)print(" Your Streamlit app is available at:", public_url)# run streamlit app!streamlit run app.py &>/dev/null &

Finally, we set up a publicly accessible Streamlit app running in Google Colab using ngrok. It does the following:  

    Authenticates ngrok using your personal token (NGROK_TOKEN) to create a secure tunnel.Exposes the Streamlit app running on port 8501 to an external URL via ngrok.connect(8501).Prints the public URL, which can be used to access the app in any browser.Launches the Streamlit app (app.py) in the background.

This method lets you interact remotely with your image captioning app, even though Google Colab does not provide direct web hosting.

In conclusion, we’ve successfully created and deployed a multimodal image captioning app powered by Salesforce’s BLIP and Streamlit, hosted securely via ngrok from a Google Colab environment. This hands-on exercise demonstrated how easily sophisticated machine learning models can be integrated into user-friendly interfaces and provided a foundation for further exploring and customizing multimodal applications.


Here is the Colab Notebook. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 80k+ ML SubReddit.

The post A Coding Guide to Build a Multimodal Image Captioning App Using Salesforce BLIP Model, Streamlit, Ngrok, and Hugging Face appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

BLIP模型 Streamlit 图像描述 多模态应用
相关文章