机器之心 01月25日
年末重磅!ByteDance Research视频理解大模型「眼镜猴」正式发布
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

Tarsier2是ByteDance Research的视频理解大模型,在视频理解任务上表现出色,能分析复杂影视片段,其强大能力得益于预训练和后训练,且在多个公开基准上取得SOTA成绩,在下游任务中也有强泛化能力。

🦘Tarsier2对视频中人物动作捕捉细致,能结合字幕信息分析

💻Tarsier2是7B大小轻量级模型,支持动态分辨率,擅长短视频分析

📑预训练通过收集筛选互联网视频 - 文本数据解决训练难点

🎯后训练分SFT和DPO阶段,强化模型对时序等信息的关注度

2025-01-25 12:06 北京

补齐多模态最后一块短板,Tarsier2 反超 GPT4o、Gemini-1.5-Pro!

机器之心发布

机器之心编辑部



最近,ByteDance Research 的视频理解大模型眼镜猴(Tarsier) 迎来了巨大更新,发布了第二代模型 Tarsier2 及相关技术报告。研究团队此前发布的 Tarsier-7B/34B 在视频描述领域已经是最强开源模型,仅次于闭源模型 Gemini-1.5-Pro 和 GPT-4o。那么这次新版 Tarsier2 又会带给我们什么样的惊喜呢?


直接上强度!来看看 Tarsier2 对下面这两个影视名场面的理解如何:


《燕子,没有你我怎么活》


《曹操盖饭》


可以看到,Tarsier2 不仅对于视频中人物动作捕捉得细致入微(如小岳岳追车、跪地,曹操盖饭、挥手),还可以充分结合视频中的字幕信息,从而进一步分析人物的动机 / 心理,理解人物关系和情节发展。


既然如此复杂的影视片段能够分析清楚,Tarsier 最擅长的视频描述任务自然也不在话下:


Tarsier2 视频描述效果合集


无论是真人还是动画、横屏还是竖屏、多场景还是多镜头,Tarsier2 总是能敏锐地捕捉视频中的核心视觉元素动态事件,使用简练的语言表述出来,并且很少产生幻觉。这么看来,Tarsier2 已经可以和 GPT-4o 扳一扳手腕了。



“火眼金睛” 是怎么炼成的?


Tarsier2 是一个 7B 大小的轻量级模型,支持动态分辨率,能够看得懂长达几十分钟的视频,尤其擅长对几十秒的短视频片段进行分析。研究团队公开了详尽的技术报告,相关数据、代码和模型也在持续开源中:




Tarsier2 强大的视频理解能力主要得益于预训练后训练两个阶段的精益求精


预训练


Tarsier2 在 4000 万个互联网视频 - 文本数据上进行预训练。不同于文本模型只需要互联网上的单语语料就可训练,视频理解模型严重依赖高质量的视频 - 文本对齐数据。因此,如何大规模地获取对齐数据是模型训练的最大难点。团队主要通过以下两个途径来解决:



后训练


后训练分为 SFT 和 DPO 两个阶段。


SFT:这一阶段,模型在人工标注的视频描述数据上进行训练。这个阶段的描述数据也是大有讲究。Tarsier2 提出在视频描述中引入针对每个子事件的具体定位信息(即明确每个事件源自哪些帧),以强化模型对时序信息与视觉特征的关注度,增强文本与视觉信号的对齐。


SFT数据样例


DPO:这一阶段,模型在自动化构造的正负样本上进行 DPO 训练。其中,正样来源于模型对原始视频的预测结果;负样本来源于模型对经过预先设计的随机扰动的视频的预测结果。这种直观高效的构造方式使得模型能够在描述视频时,“又准确又全面”,减少描述中存在的幻觉。


是骡子是马,牵出来溜溜!


俗话说,“光说不练假把式”,Tarsier2 在多达 19 个视频理解公开基准上进行了性能测试,和最新最强的 10+ 个开源模型(Qwen2-VL、InternVL2.5、LLaVA-Video 等)以及闭源模型(Gemini-1.5, GPT-4o)来了场 “硬碰硬”。


Tarsier2 在包括视频描述、短 / 长视频问答在内的通用视频理解任务上表现亮眼。在视频描述评测集 DREAM-1K 上,Tarsier2 相比 GPT-4o 提升 +2.8%,相比 Gemini-1.5-Pro 提升 +5.8%;在人工评估中,Tarsier2-7b 相比 GPT-4o 优势占比 +7.8%,相比 Gemini-1.5-Pro 优势占比 +12.3%。


视频描述质量人工评估结果


此外,Tarsier2 更是在 10+ 个视频理解公开榜单上,超越了 Qwen2-VL-7B、InternVL2.5-8B 等同规模的模型,取得了 SOTA 成绩:


Tarsier2在广泛的视频理解任务上树立了新的标杆

除了胜任各种通用视频理解任务,Tarsier2 作为基座模型在机器人、智能驾驶等下游任务场景中也展现出了极强的泛化能力。在机器人领域,Tarsier2 能为指定的任务生成详细的步骤指令。在智能驾驶方面,Tarsier2 也能够帮助车辆识别道路情况,并辅助进行决策。


机器人场景。


智能驾驶场景。


向更强的智能进发


Tarsier 在生成详细且准确的视频描述方面超越了现有的闭源和开源工作,更是在广泛的视频理解任务中树立了新的标杆。文本、语音、图片、视频多模态深度融合是当下人工智能发展的核心趋势与关键方向,Tarsier2 在这条道路上已经迈出了坚实的步伐。期待未来 Tarsier2 能在多模态融合的浪潮中持续领航,为人工智能的发展带来更多惊喜与突破 。





© THE END 

转载请联系本公众号获得授权

投稿或寻求报道:liyazhou@jiqizhixin.com

阅读原文

跳转微信打开

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Tarsier2 视频理解 预训练 后训练 多模态
相关文章