智源社区 2024年11月16日
汪劲:描述生物系统涌现行为的景观和流理论视角
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了能量景观理论在理解生物分子识别中的作用,特别是蛋白质折叠、配体结合和酶催化等过程。能量景观理论认为,生物分子在构象空间中存在一个能量势能面,其形状和拓扑结构决定了生物分子的动力学和热力学行为。文章回顾了能量景观理论的发展历程,介绍了其在理解蛋白质折叠、配体结合和酶催化等方面的应用,并讨论了该理论在药物设计和生物工程等领域的潜在应用。此外,文章还强调了能量景观理论在理解生物分子识别中的特异性和亲和力方面的作用,以及如何利用能量景观理论来设计具有更高特异性和亲和力的生物分子。

🤔**能量景观理论概述**: 该理论认为生物分子在构象空间中存在一个能量势能面,其形状和拓扑结构决定了生物分子的动力学和热力学行为,包括蛋白质折叠、配体结合和酶催化等过程。

🧬**蛋白质折叠**: 能量景观理论被用来解释蛋白质折叠的机制,例如蛋白质如何从无序状态折叠成具有特定三维结构的功能状态,以及折叠路径和动力学过程。

🤝**配体结合**: 该理论可以用来理解配体与蛋白质或核酸等生物分子的结合过程,包括结合的特异性和亲和力,以及结合过程中的构象变化。

🧪**酶催化**: 能量景观理论可以解释酶如何降低反应活化能,加速反应速率,以及酶催化反应的机制和特异性。

💊**药物设计**: 能量景观理论可以用于药物设计,通过设计具有特定形状和化学性质的药物分子,使其与靶标蛋白的结合位点更好地匹配,从而提高药物的效力和特异性。

    Anderson, P.W.: More if different: Broken Symmetry and the nature of hierarchical structure in sci- ence. Science 177, 393–396 (1972)

    Laughlin, R.B., Pines, D., Schmalian, J., Stojkovic, B.P., Wolynes, P.: The middle way. Proc. Natl. Acad. Sci. USA 97, 32–37 (2000)

    Qian, H., Ao, P., Tu, Y.H., Wang, J.: A framework towards understanding mesoscopic phenomena: emesrgent unpredictability, symmetry breaking and dynamics across scales. Chem. Phys. Lett. 665, 153–161 (2016)

    Hopfield, J.J.: Physics, computation, and why biology looks so different. J. Theor. Biol. 171, 53–60 (1994)

    Fang, X., Kruse, K., Lu, T., Wang, J.: Nonequilibrium physics in biology. Rev. Mod. Phys. 91, 045004 (2019)

    Wang, J.: Landscape and flux theory of non-equilibrium dynamical systems with application to biol- ogy. Adv. Phys. 64, 1–137 (2015)

    Frauenfelder, H., Parak, F., Young, R.D.: Conformational substates in proteins. Annu. Rev. Biophys Biophy. Chem. 17, 451 (1988)

    Frauenfelder, H., Sligar, S., Wolynes, P.: The energy landscapes and motions of proteins. Science 254, 1598–1603 (1991)

    Frauenfelder, H., Wolynes, P.G.: Biomolecules: where the physics of complexity and simplicity meet. Phys. Today. 47, 58–64 (1994)

    Austin, R.H., Beeson, K.W., Eisenstein, L., Frauenfelder, H., Gunsalus, I.C.: Dynamics of ligand binding to myoglobin. Biochemistry 14, 5355–5373 (1975)

    Chu, X., Wang, J.: Specificity and affinity quantification of flexible recognition from underlying energy landscape topography. PLOS Comp. Biol. 10, e1003782 (2014)

    Chu, X., Wang, J.: Microscopic chromosomal structural and dynamical origin of cell differentiation and reprogramming. Adv. Sci. 7, 2001572 (2020)

    Frauenfelder, H., Petsko, G.A., Tsernoglou, D.: Temperature-dependent X-ray diffraction as a probe of protein structural dynamics. Nature 280, 558–563 (1979)

    Levinthal, C.: Mossbauer Spectroscopy in Biological Systems: Proceedings of a Meeting Held at Allerton House, Monticello, Illinois. Debrunner P., Tsibris J., Munck E, Proceedings of a meeting held at Allerton House, pp. 22–24 (1969)

    Wang, J., Verkhivker, G.M.: Energy landscape theory, funnels, specificity, and optimal criterion of biomolecular binding. Phys. Rev. Lett. 90, 188101 (2003)

    Bryngelson, J.D., Onuchic, J.N., Socci, N.D., Wolynes, P.G.: Funnels, pathways, and the energy land- scape of protein folding: a synthesis. Proteins Struct. Funct. Bioinform. 21, 167–195 (1995)

    Onuchic, J.N., Luthey-Schulten, Z., Wolynes, P.G.: Theory of protein folding: the energy landscape perspective. Annu. Rev. Phys. Chem. 48, 545–600 (1997)

    Dill, K.A., Chan, H.S.: From Levinthal to pathways to funnels. Nat. Struct. Biol. 4, 10–19 (1997)

    Wang, J., Oliveira, R.J., Chu, X.K., Whitford, P.C., Chahine, J., Han, W., Wang, E.K., Onuchic, J.N., Leite, V.B.P.: Topography of funneled landscapes determines the thermodynamics and kinetics of protein folding. Proc. Natl. Acad. Sci. USA 109, 15763–15768 (2012)

    Chu, X.K., Gan, L.F., Wang, E.K., Wang, J.: Quantifying the topography of the intrinsic energy land- scape of flexible biomolecular recognition. Proc. Natl. Acad. Sci. USA 110, E2342–E2351 (2013)

    Wang, J., Zheng, X., Yang, Y., Drueckhammer, D., Wei, Y., Verkhivker, G., Wang, E.: Quantifying intrinsic specificity: a potential complement to affinity in drug screening. Phys. Rev. Lett. 99, 198101 (2007)

    Yan, Z., Zheng, X., Wang, E., Wang, J.: Thermodynamic and kinetic specificities of ligand binding. Chem. Sci. 4, 2387–2395 (2013)

    Zheng, X.L., Liu, Z.J., Li, D., Wang, E.K., Wang, J.: Rational drug design: the search for ras protein hydrolysis intermediate conformation inhibitors with both affinity and specificity. Curr. Pharm. Des. 19, 2246–2258 (2013)

    Yan, Z.Q., Wang, J.: Quantifying the kinetic residence time as a potential complement to affinity for the aptamer selection. J. Phys. Chem. B 122, 8380–8385 (2018)

    Yan, Z., Wang, J.: Incorporating specificity into optimization: evaluation of SPA using CSAR 2014 and CASF 2013 benchmarks. J. Comput. Aid. Mol. Des. 30, 219–227 (2016)

    Yan, Z., Wang, J.: Specificity quantification of biomolecular recognition and its implication for drug discovery. Sci. Rep. 2, 309 (2012)

    Zheng, X.L., Gan, L.F., Wang, E.K., Wang, J.: Pocket-based drug design: exploring pocket space. Aaps J. 15, 228–241 (2013)

    Zheng, X.L., Wang, J.: The universal statistical distributions of the affinity, equilibrium constants, kinetics and specificity in biomolecular recognition. PLOS Comput. Biol. 11, 24 (2015)

    Zheng, X.L., Wang, J.: Universal statistical fluctuations in thermodynamics and kinetics of single molecular recognition. Phys. Chem. Chem. Phys. 18, 8570–8578 (2016)

    Yan, Z., Guo, L., Hu, L., Wang, J.: Specificity and affinity quantification of protein-protein interac- tions. Bioinformatics 29, 1127–1133 (2013)

    Yan, Z., Wang, J.: Optimizing scoring function of protein-nucleic acid interactions with both affinity and specificity. PLoS ONE 8, e74443 (2012)

    Yan, Z., Wang, J.: Optimizing the affinity and specificity of ligand binding with the inclusion of sol- vation effect. Proteins Struct. Funct. Bioinform. 83, 1632–1642 (2015)

    Yang, Y.L., Li, G.H., Zhao, D.Y., Yu, H.Y., Zheng, X.L., Peng, X.D., Zhang, X., Fu, T., Hu, X.Q., Niu, M.S., Ji, X.F., Zou, L.B., Wang, J.: Computational discovery and experimental verification of tyrosine kinase inhibitor pazopanib for the reversal of memory and cognitive deficits in rat model neurodegeneration. Chem. Sci. 6, 2812–2821 (2015)

    Zhao, W.J., Li, D., Liu, Z.J., Zheng, X.L., Wang, J., Wang, E.K.: Spiclomazine induces apoptosis associated with the suppression of cell viability, migration and invasion in pancreatic carcinoma cells. PLoS ONE 8, 10 (2013)

    Liu, Z., Li, D., Zhao, W., Zheng, X., Wang, E.: A potent lead induces apoptosis in pancreatic cancer cells. PLoS ONE 7, e37841 (2012)

    Liu, Z., Zheng, X., Yang, X., Wang, E., Wang, J.: Affinity and specificity of levamlodipine-human serum albumin interactions: insights into its carrier function. Biophys. J. 96, 3917–3925 (2009)

    Liu, Z.J., Li, D., Zheng, X.L., Wang, E.K., Wang, J.: Selective induction of apoptosis: promising therapy in pancreatic cancer. Curr. Pharm. Des. 19, 2259–2268 (2013)

    Liu, Z.J., Zheng, X.L., Wang, J., Wang, E.K.: Molecular analysis of thymopentin binding to HLA-DR molecules. PLoS ONE 2, 8 (2007)

    Li, D., Liu, Z.J., Zhao, W.J., Zheng, X.L., Wang, J., Wang, E.K.: A small-molecule induces apoptosis and suppresses metastasis in pancreatic cancer cells. Eur. J. Pharm. Sci. 48, 658–667 (2013)

    Liu, F., Chu, X., Lu, H.P., Wang, J.: Molecular mechanism of multispecific recognition of Calmodulin through conformational changes. Proc. Natl. Acad. Sci. USA 114, E3927–E3934 (2017)

    Liu, F., Qing, H., Wang, J.: Mechanochemical model of the power stroke of the single-headed motor protein KIF1A. J. Phys. Chem. B 122, 11002–11013 (2018)

    Wang, Y., Chu, X.K., Longhi, S., Roche, P., Han, W., Wang, E.K., Wang, J.: Multiscaled exploration of coupled folding and binding of an intrinsically disordered molecular recognition element in mea- sles virus nucleoprotein. Proc. Natl. Acad. Sci. USA 110, E3743–E3752 (2013)

    Wang, Y., Chu, X.K., Suo, Z.C., Wang, E.K., Wang, J.: Multidomain protein solves the folding prob- lem by multifunnel combined landscape: theoretical investigation of a Y-family DNA polymerase. J. Am. Chem. Soc. 134, 13755–13764 (2012)

    Chu, X., Liu, F., Maxwell, B.A., Wang, Y., Suo, Z., Wang, H., Han, W., Wang, J.: Dynamic confor- mational change regulates the protein-DNA recognition: an investigation on binding of a Y-family polymerase to its target DNA. PLoS Comput. Biol. 10, e1003804 (2014)

    Yan, Z., Wang, J.: Funneled energy landscape unifies principles of protein binding and evolution. Proc. Natl. Acad. Sci. USA 117, 27218–27223 (2020)

    Yan, Z., Wang, J.: Superfunneled energy landscape of protein evolution unifies the principles of pro- tein evolution, folding, and design. Phys. Rev. Lett. 122, 018103 (2019)

    Yan, Z., Wang, J.: SPA-LN: a scoring function of ligand–nucleic acid interactions via optimizing both specificity and affinity. Nucleic Acids Res. 45, e110 (2017)

    Kar, G., Keskin, O., Gursoy, A., Nussinov, R.: Allostery and population shift in drug discovery. Curr. Opin. Pharmacol. 10, 715–722 (2010)

    Dunker, A.K., Lawson, J.D., Brown, C.J., Williams, R.M., Romero, P., Oh, J.S., Oldfield, C.J., Campen, A.M., Ratliff, C.M., Hipps, K.W.: Intrinsically disordered protein. J. Mol. Graph. Model. 19, 26–59 (2001)

    Onuchic, J.N., Levy, Y., Wolynes, P.G.: Fly-casting in protein? DNA binding:? Frustration between protein folding and electrostatics facilitates target recognition. J. Am. Chem. Soc. 129, 738–739 (2007)

    Levy, Y., Wolynes, P.G., Onuchic, J.N.: Protein topology determines binding mechanism. Proc. Natl. Acad. Sci. USA 101, 511–516 (2004)

    Wang, J., Xu, L., Wang, E.: Optimal specificity and function for flexible biomolecular recognition. Biophys. J. 92, L109–L111 (2007)

    Zhao, L.C., Lu, H.P., Wang, J.: Exploration of multistate conformational dynamics upon ligand bind- ing of a monomeric enzyme involved in pyrophosphoryl transfer. J. Phys. Chem. B 122, 1885–1897 (2018)

    Zhao, L.C., Suarez, I.P., Gauto, D.F., Rasia, R.M., Wang, J.: The key role of electrostatic interactions in the induced folding in RNA recognition by DCL1-A. Phys. Chem. Chem. Phys. 20, 9376–9388 (2018)

    Chu, X.K., Suo, Z.C., Wang, J.: Investigating the trade-off between folding and function in a multid- omain Y-family DNA polymerase. Elife 9, 40 (2020)

    Chu, X.K., Suo, Z.C., Wang, J.: Confinement and crowding effects on folding of a multidomain Y-family DNA polymerase. J. Chem. Theory. Comput. 16, 1319–1332 (2020)

    Chu, X.K., Wang, J.: Position-, disorder-, and salt-dependent diffusion in binding-coupled-folding of intrinsically disordered proteins. Phys. Chem. Chem. Phys. 21, 5634–5645 (2019)

    Chu, X.K., Wang, Y., Gan, L.F., Bai, Y.W., Han, W., Wang, E.K., Wang, J.: Importance of electro- static interactions in the association of intrinsically disordered histone chaperone Chz1 and histone H2A.Z-H2B. PLOS Comput. Biol. 8, 11 (2012)

    Chu, W.T., Chu, X., Wang, J.: Investigations of the underlying mechanisms of HIF-1α and CITED2 binding to TAZ1. Proc. Natl. Acad. Sci. USA 117, 201915333 (2020)

    Chu, W.T., Chu, X.K., Wang, J.: Binding mechanism and dynamic conformational change of C subu- nit of PKA with different pathways. Proc. Natl. Acad. Sci. USA 114, E7959–E7968 (2017)

    Chu, W.T., Clarke, J., Shammas, S.L., Wang, J.: Role of non-native electrostatic interactions in the coupled folding and binding of PUMA with Mcl-1. PLOS Comput. Biol. 13, 20 (2017)

    Chu, W.T., Nesbitt, N.M., Gnatenko, D.V., Li, Z., Zhang, B., Seeliger, M.A., Browne, S., Mantle, T.J., Bahou, W.F., Wang, J.: Enzymatic activity and thermodynamic stability of biliverdin IXβ reductase are maintained by an active site serine. Chem. Eur. J. 23, 1891–1900 (2017)

    Chu, W.T., Shammas, S.L., Wang, J.: Charge interactions modulate the encounter complex ensemble of two differently charged disordered protein partners of KIX. J. Chem. Theory. Comput. 16, 3856– 3868 (2020)

    Chu, W.T., Suo, Z.C., Wang, J.: Binding-induced conformational changes involved in sliding clamp PCNA and DNA polymerase DPO4. Iscience 23, 24 (2020)

    Chu, W.T., Wang, J.: Energy landscape topography reveals the underlying link between binding speci- ficity and activity of enzymes. Sci. Rep. 6, 9 (2016)

    Chu, W.T., Wang, J.: Quantifying the intrinsic conformation energy landscape topography of proteins with large-scale open-closed transition. ACS Cent. Sci. 4, 1015–1022 (2018)

    Chu, W.T., Wang, J.: Thermodynamic and sequential characteristics of phase separation and droplet formation for an intrinsically disordered region/protein ensemble. PLOS Comput. Biol. 17, 20 (2021)

    Chu, W.T., Wang, J.: Influence of sequence length and charged residues on Swc5 binding with histone H2A–H2B. Proteins Struct. Funct. Bioinform. 89, 512–520 (2021)

    Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry, 3rd edn. Elsevier, Amsterdam (2007)

    Reichl, L.E.: A Modern Course in Statistical Physics, 3rd Revised and Updated Edition. University of Texas Press, Texas (1984)

    Swain, P.S., Elowitz, M.B., Siggia, E.D.: Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc. Natl. Acad. Sci. USA 99, 12795–12795 (2002)

    Hu, G.: Stochastic Force and Nonlinear Systems. Shanghai Science Education, Shanghai (1995)

    Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Computat. Phys. 22, 403–434 (1976)

    Haken, H.: Advanced Synergetics: Instability Hierarchies of Self-Organizing Systems and Devices. Springer, Berlin (1983)

    Wang, J., Xu, L., Wang, E.K.: Potential landscape and flux framework of nonequilibrium networks: Robustness, dissipation, and coherence of biochemical oscillations. Proc. Natl. Acad. Sci. USA 105, 12271–12276 (2008)

    Xu, L., Wang, J.: Quantifying the potential and flux landscapes of multi-locus evolution. J. Theor. Biol. 422, 31–49 (2017)

    Xu, L., Wang, J.: Landscape and flux for quantifying global stability and dynamics of game theory. PLoS ONE 13, e0201130 (2018)

    Xu, L., Wang, J.: Curl flux as a dynamical origin of the bifurcations/phase transitions of nonequilib- rium systems: cell fate decision making. J. Phys. Chem. B 124, 2549–2559 (2020)

    Xu, L., Zhang, F., Wang, E.K., Wang, J.: The potential and flux landscape, Lyapunov function and non-equilibrium thermodynamics for dynamic systems and networks with an application to signal- induced Ca2+ oscillation. Nonlinearity 26, R69–R84 (2013)

    Xu, L., Zhang, F., Zhang, K., Wang, E.K., Wang, J.: The potential and flux landscape theory of ecol- ogy. PLoS ONE 9, e86746 (2014)

    Xu, L., Zhang, K., Wang, J.: Exploring the mechanisms of differentiation, dedifferentiation, repro- gramming and transdifferentiation. PLoS ONE 9, e105216 (2014)

    Zhang, F., Xu, L., Zhang, K., Wang, E.K., Wang, J.: The potential and flux landscape theory of evolu- tion. J. Chem. Phys. 137, 065102 (2012)

    Gardiner, C.W.: Handbook of Stochastic Methods, Stochastic Processes in Physics & Chemistry. Elsevier, New York (1985)

    Haken, H.: Advanced Synergetics: Instability Hierarchies of Self-Organizing Systems and Devices. Springer, Berlin (1987)

    Wang, J., Zhang, K., Lu, H.Y., Wang, E.K.: Dominant Kinetic Paths on Biomolecular Binding- Folding Energy Landscape. Phys. Rev. Lett. 96, 168101 (2006)

    Wang, J., Zhang, K., Wang, E.: Kinetic paths, time scale, and underlying landscapes: a path inte- gral framework to study global natures of nonequilibrium systems and networks. J. Chem. Phys. 133, 125103 (2010)

    Feng, H.D., Han, B., Wang, J.: Dominant kinetic paths of complex systems: gene networks. J Phys. Chem. Lett. 1, 1836–1840 (2010)

    Feng, H.D., Zhang, K., Wang, J.: Non-equilibrium transition state rate theory. Chem. Sci. 5, 3761– 3769 (2014)

    Wang, J., Xu, L., Wang, E.K., Huang, S.: The potential landscape of genetic circuits imposes the arrow of time in stem cell differentiation. Biophys. J. 99, 29–39 (2010)

    Wang, J., Zhang, K., Lu, H.Y., Wang, E.K.: Quantifying kinetic paths of protein folding. Biophys. J. 89, 1612–1620 (2005)

    Yan, H., Wang, J.: Quantification of motor network dynamics in Parkinson’s disease by means of landscape and flux theory. PLoS ONE 12, e0174364 (2017)

    Yan, H., Zhang, K., Wang, J.: Physical mechanism of mind changes and tradeoffs among speed, accuracy, and energy cost in brain decision making: landscape, flux, and path perspectives. Chi- nese Phys B. 25, 078702 (2016)

    Yan, H., Zhao, L., Hu, L., Wang, X., Wang, E., Wang, J.: Nonequilibrium landscape theory of neu- ral networks. Proc. Natl. Acad. Sci. USA 110, E4185–E4194 (2013)

    Wang, J., Huang, B., Xia, X., Sun, Z.: Funneled landscape leads to robustness of cell networks: yeast cell cycle. PLOS Comput. Biol. 2, e147 (2006)

    Xu, L.F., Shi, H.L., Feng, H.D., Wang, J.: The energy pump and the origin of the non-equilibrium flux of the dynamical systems and the networks. J. Chem. Phys. 136, 165102 (2012)

    Gérard, C., Goldbeter, A.: Temporal self-organization of the cyclin/Cdk network driving the mam- malian cell cycle. Proc. Natl. Acad. Sci. USA 106, 21643–21648 (2009)

    Lv, C., Li, X., Li, F., Li, T.: Energy landscape reveals that the budding yeast cell cycle is a robust and adaptive multi-stage process. PLoS Comput. Biol. 11, e1004156 (2015)

    Ferrell, J., Tsai, T.C., Yang, Q.: Modeling the cell cycle: why do certain circuits oscillate? Cell

    144, 874–885 (2011)

    Bo, H., Jin, W.: Quantifying robustness and dissipation cost of yeast cell cycle network: the fun- neled energy landscape perspectives. Biophys. J. 92, 3755–3763 (2007)

    Yang, Q., Ferrell, J.E., Jr.: The Cdkl-APC/C cell cycle oscillator circuit functions as a time delayed, ultra sensitive switch. Nat. Cell Biol. 15, 519 (2013)

    Tsai, Y.C., Theriot, J.A., Ferrell, J.E.: Changes in oscillatory dynamics in the cell cycle of early

    Xenopus laevis embryos. PLoS Biol. 12, e1001788 (2014)

    Li, F., Long, T., Lu, Y., Ouyang, Q., Tang, C.: The yeast cell-cycle is robustly designed. Proc. Natl. Acad. Sci. USA 101, 4781–4786 (2004)

    Li, C.H., Wang, J.: Landscape and flux reveal a new global view and physical quantification of mammalian cell cycle. Proc. Natl. Acad. Sci. USA 111, 14130–14135 (2014)

    Han, B., Wang, J.: Quantifying robustness and dissipation cost of yeast cell cycle network: The funneled energy landscape perspectives. Biophys. J. 92, 3755–3763 (2007)

    Wang, J., Li, C.H., Wang, E.K.: Potential and flux landscapes quantify the stability and robustness of budding yeast cell cycle network. Proc. Natl. Acad. Sci. USA 107, 8195–8200 (2010)

    Zhang, K., Wang, J.: Exploring the underlying mechanisms of the Xenopus laevis embryonic cell cycle. J. Phys. Chem. B 122, 5487–5499 (2018)

    Kauffman, S.: Homeostasis and differentiation in random genetic control networks. Nature 224, 177–178 (1969)

    Kauffman, S.: Differentiation of malignant to benign cells. J. Theor. Biol. 31, 429–451 (1971)

    Zhang, B., Wolynes, P.G.: Stem cell differentiation as a many-body problem. Proc. Natl. Acad. Sci. USA 111, 10185–10190 (2014)

    Waddington, C.H.: The strategy of the genes. A discussion of some aspects of theoretical biology. With an appendix by H. Kacser (1957)

    Chickarmane, V., Peterson, C.: A computational model for understanding stem cell, trophectoderm and endoderm lineage determination. PLoS ONE 3, e3478 (2008)

    Jiang, J.M., Chan, Y.S., Loh, Y.H., Cai, J., Tong, G.Q., Lim, C.A., Robson, P., Zhong, S., Ng, H.H.: A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat. Cell Biol. 10, 353–360 (2008)

    Sui, H., Ernberg, I., Kauffman, S.: Cancer attractors: a systems view of tumors from a gene network dynamics and developmental perspective. Semin. Cell Dev. Biol. 20, 869–876 (2009)

    Li, C.H., Wang, J.: Quantifying cell fate decisions for differentiation and reprogramming of a human stem cell network: landscape and biological paths. PLOS Comput. Biol. 9, e1003165 (2013)

    Wang, J., Zhang, K., Xu, L., Wang, E.: Quantifying the Waddington landscape and biological paths for development and differentiation. Proc. Natl. Acad. Sci. USA 108, 8257–8262 (2011)

    Zhang, K., Wang, J.: Exploring the underlying mechanisms of the coupling between cell differentia- tion and cell cycle. J. Phys. Chem. B 123, 3490–3498 (2019)

    Li, C.H., Wang, J.: Quantifying Waddington landscapes and paths of non-adiabatic cell fate decisions for differentiation, reprogramming and transdifferentiation. J. R. Soc. Interface 10, 20130787 (2013)

    Feng, H.D., Wang, J.: A new mechanism of stem cell differentiation through slow binding/unbinding of regulators to genes. Sci. Rep. 2, 550 (2012)

    Weinberg, H.: Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011)

    Hanahan, D., Weinberg, R.A.: The hallmarks of cancer. Cell 100, 57–70 (2000)

    Gatenby, R.A., Vincent, T.L.: An evolutionary model of carcinogenesis. Cancer Res. 63, 6212–6220 (2003)

    Wang, E., Lenferink, A., Connor-McCourt, M.O.: Cancer systems biology: exploring cancer-associated genes on cellular networks. Cell Mol. Life Sci. 64, 1752–1762 (2007)

    Ao, P., Galas, D., Hood, L., Zhu, X.M.: Cancer as robust intrinsic state of endogenous molecular- cellular network shaped by evolution. Med Hypotheses. 70, 678–684 (2008)

    Bar-Yam, Y., Harmon, D., Bivort, B.D.: Systems biology. Attractors and democratic dynamics. Sci- ence 323, 1016 (2009)

    Basan, M., Risler, T., Joanny, J., Sastre Garau, X., Prost, J.: Homeostatic competition drives tumor growth and metastasis nucleation. Hfsp J. 3, 265–272 (2009)

    Creixell, P., Schoof, E.M., Erler, J.T., Linding, R.: Navigating cancer network attractors for tumor- specific therapy. Nat. Biotechnol. 30, 842–848 (2012)

    Lu, M., Jolly, M.K., Levine, H., Onuchic, J.N., Ben-Jacob, E.: MicroRNA-based regulation of epithe- lial-hybrid-mesenchymal fate determination. Proc. Natl. Acad. Sci. USA 110, 18144–18149 (2013)

    Yu, C., Liu, Q., Chen, C., Yu, J., Wang, J.: Landscape perspectives of tumor, EMT, and development. Phys. Biol. 16, 051003 (2019)

    Yu, C., Wang, J.: A physical mechanism and global quantification of breast cancer. PLoS ONE 11, e0157422 (2016)

    Yu, C., Xu, H., Wang, J.: A global and physical mechanism of gastric cancer formation and progres- sion. J. Theor. Biol 520, 110643 (2021)

    Li, C.H., Wang, J.: Quantifying the landscape for development and cancer from a core cancer stem cell circuit. Cancer Res. 75, 2607–2618 (2015)

    Li, W.B., Wang, J.: Uncovering the underlying mechanism of cancer tumorigenesis and development under an immune microenvironment from global quantification of the landscape. J. R. Soc. Interface. 14, 20170105 (2017)

    Chen, C., Wang, J.: A physical mechanism of cancer heterogeneity. Sci. Rep. 6, 20679 (2015)

    Li, C., Wang, J.: Quantifying the underlying landscape and paths of cancer. J. R. Soc. Interface. 11, 20140774 (2014)

    Kang, X., Li, C.: A dimension reduction approach for energy landscape: identifying intermediate states in metabolism-MT network. Adv. Sci. 8, 2003133 (2021)

    Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79, 2554–2558 (1982)

    Shadlen, M.N., Newsome, W.T.: Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J. Neurophysiol. 86, 1916 (2001)

    Roitman, J.D., Shadlen, M.N.: Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. J. Neurosci. 22, 9475–9489 (2002)

    Abbott, L.F.: Theoretical neuroscience rising. Neuron 60, 489–495 (2008)

    Yan, H., Wang, J.: Non-equilibrium landscape and flux reveal the stability-flexibility-energy tradeoff in working memory. PLOS Comp. Biol. 16, e1008209 (2020)

    Han, Y., Wang, J.: Non-equilibrium landscape and flux reveal how the central amygdala circuit gates passive and active defensive responses. J. R. Soc. Interface. 16, 20180756 (2019)

    Fisher, R.A.: The Genetical Theory of Natural Selection. Oxford University Press, Oxford (1930)

    Rice, S.H.: Evolutionary Theory: Mathematical and Conceptual Foundations. Sinauer Associates, Massachusetts (2004)

    Wright, S.: Statistical genetics and evolution. B. Am. Math. Soc. 48, 223–246 (1941)

    Shraiman, R.A.N., Boris, I.: Statistical genetics and evolution of quantitative traits. Rev. Mod. Phys.

    83, 1283–1300 (2011)

    Valen, L.V.: A new evolutionary law. Evolut. Theory 1, 1–30 (1973)

    Tokuda, N., Terada, T.P., Sasai, M.: Dynamical modeling of three-dimensional genome organization in interphase budding yeast. Biophys. J. 102, 296–304 (2012)

    others, E. P. C. a.: An integrated encyclopedia of DNA elements in the human genome OPEN. Nature

    489, 57–74 (2012)

    Pruitt, K.D., Tatusova, T., Maglott, D.R.: NCBI Reference Sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 33, D501–D504 (2005)

    Lieberman-Aiden, E., Berkum, N.V., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B.R., Sabo, P.J., Dorschner, M.O.: Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289 (2009)

    Pierro, M., Cheng, R.R., Aiden, E.L., Wolynes, P.G., Onuchic, J.N.: De novo prediction of human chromosome structures: epigenetic marking patterns encode genome architecture. Proc. Natl. Acad. Sci. USA 114, 201714980 (2017)

    Yang, H., Luan, Y., Liu, T., Lee, H.J., Yue, F.: A map of cis-regulatory elements and 3D genome structures in zebrafish. Nature 588, 337–343 (2020)

    Chu, X., Wang, J.: Conformational state switching and pathways of chromosome dynamics in cell cycle. Appl. Phys. Rev. 7, 031403 (2020)

    Chu, X., Wang, J.: Insights into the molecular mechanisms of cell fate decision making processes from chromosome structural dynamics. bioRxiv, 2021.05.09.443292 (2021)

    Chu, X., Wang, J.: Deciphering the molecular mechanism of the cancer formation by chromosome structural dynamics. bioRxiv, 2021.02.15.431330 (2021)

    Nicolis, G., Prigogine, I.: Self-Organization in Nonequilibrium Systems. Wiley, New York (1977)

    Fang, X., Liu, Q., Christopher, B., Zach, H., Han, W., Jin, W., Jie, X.: Cell fate potentials and switch- ing kinetics uncovered in a classic bistable genetic switch. Nat. Commun. 9, 2787 (2018)

    Jiang, Z., Tian, L., Fang, X., Zhang, K., Liu, Q., Dong, Q., Wang, E., Wang, J.: The emergence of the two cell fates and their associated switching for a negative auto-regulating gene. BMC Biol. 17, 49 (2019)

    Ptashne, M.: A Genetic Switch: Phage Lambda Revisited. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2004)

    Liu, Q., Wang, J.: Quantifying the flux as the driving force for nonequilibrium dynamics and ther- modynamics in non-Michaelis–Menten enzyme kinetics. Proc. Natl. Acad. Sci. USA 117, 923–930 (2019)

    Nussinov, R., Wolynes, P.G.: A second molecular biology revolution? The energy landscapes of bio- molecular function. Phys. Chem. Chem. Phys. 16, 6321–6322 (2014)

    Lapidus, S., Han, B., Wang, J.: Intrinsic noise, dissipation cost, and robustness of cellular networks: The underlying energy landscape of MAPK signal transduction. Proc. Natl. Acad. Sci. USA 105, 6039–6044 (2008)

    Wang, J., Zhang, K., Wang, E.: Robustness and dissipation of mitogen-activated protein kinases sig- nal transduction network: Underlying funneled landscape against stochastic fluctuations. J. Chem. Phys. 129, 10B602-109 (2008)

    Li, W., Wang, J.: Uncovering the underlying mechanisms of cancer metabolism through the land- scapes and probability flux quantifications. iScience 23, 101 (2020)

    Luo, X., Xu, L., Han, B., Wang, J., Morozov, A.V.: Funneled potential and flux landscapes dictate the stabilities of both the states and the flow: Fission yeast cell cycle. PLOS Comput. Biol. 13, e1005710 (2017)

    Li, W., Wang, J.: Uncovering the underlying physical mechanism for cancer-immunity of MHC class I diversity. Biochem. Biophys. Res. Commun. 504, 532–537 (2018)

    Zhao, L., Wang, J.: Uncovering the mechanisms of Caenorhabditis elegans ageing from global quanti- fication of the underlying landscape. J. R. Soc. Interface. 13, 20160421 (2016)

    Li, W., Zhao, L., Wang, J.: Searching for the mechanisms of mammalian cellular aging through underlying gene regulatory networks. Front. Genet. 11, 593 (2020)

    Li, C., Wang, E., Wang, J., Sui, H.: Potential landscape and probabilistic flux of a predator prey net- work. PLoS ONE 6, e17888 (2011)

    Xu, L., Patterson, D., Staver, A.C., Levine, S.A., Wang, J.: Unifying deterministic and stochastic ecological dynamics via a landscape-flux approach. Proc. Natl. Acad. Sci. USA 118, e2103779118 (2021)

    Zhang, K., Wang, J.: Landscape and flux theory of non-equilibrium open economy. Physica A 482, 189–208 (2017)

    Zhang, K., Liu, J., Wang, E.K., Wang, J.: Quantifying risks with exact analytical solutions of deriva- tive pricing distribution. Physica A 471, 757–766 (2017)

    Zhang, F., Xu, L., Wang, J.: The dynamic and thermodynamic origin of dissipative chaos: chemical Lorenz system. Phys. Chem. Chem. Phys. 22, 27896–27902 (2020)

    Li, C., Wang, E., Wang, J.: Potential flux landscapes determine the global stability of a Lorenz chaotic attractor under intrinsic fluctuations. J. Chem. Phys. 136, 6681–7127 (2012)

    Wu, W., Wang, J.: Nonequilibrium thermodynamics of turbulence and stochastic fluid systems. New J. Phys. 22, 113017 (2020)

    Wu, W., Zhang, F., Wang, J.: Potential landscape and flux field theory for turbulence and nonequilib- rium fluid systems. Ann Phys-New York. 389, 63–101 (2018)

    Zhang, Z., Wang, J.: Curl flux, coherence, and population landscape of molecular systems: Nonequi- librium quantum steady state, energy (charge) transport, and thermodynamics. J. Chem. Phys. 140, 245101 (2014)

    Zhang, Z., Wang, J.: Origin of long-lived coherence and excitation dynamics in pigment-protein com- plexes. Sci. Rep. 6, 37629 (2015)

    Zhang, Z., Wang, J.: Vibrational and coherence dynamics of molecules. Phys. Chem. Chem. Phys. 17, 23754–23760 (2015)

    Zhang, Z., Wang, J.: Shape, orientation and magnitude of the curl quantum flux, the coherence and the statistical correlations in energy transport at nonequilibrium steady state. New J. Phys. 17, 093021 (2015)

    Zhang, Z., Wang, J.: The assistance of molecular vibrations on coherent energy transfer in photosyn- thesis from the view of quantum heat engine. J. Phys. Chem. B 119, 4662–4667 (2015)

    Zhang, Z., Wang, J.: Landscape, kinetics, paths and statistics of curl flux, coherence, entanglement and energy transfer in non-equilibrium quantum systems. New J. Phys. 17, 043053 (2015)

    Wang, Z.H., Wu, W., Cui, G., Wang, J.: Coherence enhanced quantum metrology in a nonequilibrium optical molecule. New J. Phys. 20, 033034 (2018)

    Wang, X., Zhang, Z., Wang, J.: Excitation energy transfer under strong laser drive. Phys. Rev. A. 103, 013516 (2021)

    Zhang, K., Wu, W., Wang, J.: The influence of equilibrium and nonequilibrium environments on the macroscopic realism through Leggett-Garg inequality. Phys. Rev. A. 101, 052334 (2020)

    Zhang, K., Wang, J.: Entanglement versus Bell nonlocality of quantum nonequilibrium steady states. Quantum Inf. Process. 20, 1–32 (2021)

    Wang, Z.H., Wu, W., Wang, J.: Steady-state entanglement and coherence of two coupled qubits in equilibrium and nonequilibrium environments. Phys. Rev. A. 99, 042320 (2019)

    Li, R., Wang, J.: Thermodynamics and kinetics of Hawking-Page phase transition. Phys. Rev. D. 102, 024085 (2020)

    Li, R., Wang, J.: Hawking radiation and P v criticality of charged dynamical (Vaidya) black hole in anti-de Sitter space. Phys. Lett. B. 813, 136035 (2021)

    Li, R., Wang, J., Wang, Y. Q., Zhang, H.: Nonequilibrium dynamical transition process between excited states of holographic superconductors. J. High Energ. Phys. 59 (2020)

    Li, R., Zhang, K., Wang, J.: Thermal dynamic phase transition of Reissner-Nordström Anti-de Sitter Black Holes on free energy landscape. J High Energ Phys. 90 (2020)

    Wang, H., Wang, J.: The Nonequilibrium Back Reaction of Hawking Radiation to a Schwarzschild Black Hole. Adv. High Energy Phys. 9102461 (2020)

    Wang, H., Li, X., Wang, J.: Quantifying the potential and flux landscapes for nonequilibrium multi- verse, a new scenario for time arrow. J. High Energ. Phys. 2021, 105 (2021)

    Whitehead, A.N.: Process and Reality. Cambridge University Press, Cambridge (1929)

    Kaipayil, J.: Relationalism: A Theory of Being. JIP Publications, Bangalore (2009)

    Pamanabhan, T.: Gravitation, Foundations and Frontiers. Cambridge University Press, Cambridge (2012)

    Jacobson, T.: Thermodynamics of spacetime: the Einstein equation of state. Phys. Rev. Lett. 75, 1260–1263 (1995)

    Verlinde, E.: On the origin of gravity and the laws of Newton. J. High Energ. Phys. 2011, 029 (2011)

    Zeng, Q., Wang, J.: Information landscape and flux, mutual information rate decomposition and con- nections to entropy production. Entropy-Switz 19, 678 (2017)

    Zeng, Q., Wang, J.: Non-Markovian nonequilibrium information dynamics. Phys. Rev. E 98, 032123 (2018)

    Zeng, Q., Wang, J. : New fluctuation theorems on Maxwell’s demon. Sci. Adv. eabf1807 (2021)

    Maldacena, J., Susskind, L.: Cool horizons for entangled black holes. Fortschr. Phys. 61, 781–811 (2013)

    Feng, H., Wang, J.: Potential and flux decomposition for dynamical systems and nonequilibrium ther- modynamics: Curvature, gauge field, and generalized fluctuation-dissipation theorem. J. Chem. Phys. 135, 234511 (2011)

    Gardiner, C.W.: Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, 3rd edn. Springer, Berlin (2004)

    Bialek, W.: Biophysics: Searching for Principles. Princeton University Press, Princeton (2012)

    Wu, W., Wang, J.: Landscape framework and global stability for stochastic reaction diffusion and general spatially extended systems with intrinsic fluctuations. J. Phys. Chem. B 117, 12908–12934 (2013)

    Wu, W., Wang, J.: Potential and flux field landscape theory. I. Global stability and dynamics of spa- tially dependent non-equilibrium systems. J. Chem. Phys. 139, 121920 (2013)

    Wu, W., Wang, J.: Potential and flux field landscape theory. II. Non-equilibrium thermodynamics of spatially inhomogeneous stochastic dynamical systems. J. Chem. Phys. 141, 105 (2014)

    Zhang, B., Wolynes, P.: Topology, structures, and energy landscapes of human chromosomes. Proc. Natl. Acad. Sci. USA 112, 6062–6067 (2015)

    Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

能量景观 生物分子识别 蛋白质折叠 配体结合 药物设计
相关文章