Physics World 2024年10月31日
Chip-based optical tweezers manipulate microparticles and cells from a distance
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

光学陷阱和镊子可利用非接触力捕获和操控微粒。MIT研究者开发出微型芯片光学陷阱,可在距芯片表面5毫米处操控微粒,适用于生物研究,该装置具有可重复使用和生物相容性等特点,为光学镊子的集成应用提供了新方向。

🧐芯片光学陷阱利用非接触力捕获和操控微粒,通过聚焦光束实现对物体位置和作用力的精确控制,可在微米级或更小尺度操作。

🤖MIT研究者开发的微型芯片光学陷阱,可作为研究DNA、细胞分类和疾病机制的‘牵引光束’,能在距芯片表面5毫米处操控微粒,且装置小到可握在手中。

🌟该装置采用半导体制造工艺,在芯片上制造一系列微天线,通过特定相位模式产生紧密聚焦的光束,可对位于芯片表面毫米以上的微粒进行捕获,适用于生物研究,且完全可重复使用并具有生物相容性。

Optical traps and tweezers can be used to capture and manipulate particles using non-contact forces. A focused beam of light allows precise control over the position of and force applied to an object, at the micron scale or below, enabling particles to be pulled and captured by the beam.

Optical manipulation techniques are garnering increased interest for biological applications. Researchers from Massachusetts Institute of Technology (MIT) have now developed a miniature, chip-based optical trap that acts as a “tractor beam” for studying DNA, classifying cells and investigating disease mechanisms. The device – which is small enough to fit in your hand – is made from a silicon-photonics chip and can manipulate particles up to 5 mm away from the chip surface, while maintaining a sterile environment for cells.

The promise of integrated optical tweezers

Integrated optical trapping provides a compact route to accessible optical manipulation compared with bulk optical tweezers, and has already been demonstrated using planar waveguides, optical resonators and plasmonic devices. However, many such tweezers can only trap particles directly on (or within several microns of) the chip’s surface and only offer passive trapping.

To make optical traps sterile for cell research, 150-µm thick glass coverslips are required. However, the short focal heights of many integrated optical tweezers means that the light beams can’t penetrate into standard sample chambers. Because such devices can only trap particles a few microns above the chip, they are incompatible with biological research that requires particles and cells to be trapped at much larger distances from the chip’s surface.

With current approaches, the only way to overcome this is to remove the cells and place them on the surface of the chip itself. This process contaminates the chip, however, meaning that each chip must be discarded after use and a new chip used for every experiment.

Trapping device for biological particles

Lead author Tal Sneh and colleagues developed an integrated optical phased array (OPA) that can focus emitted light at a specific point in the radiative near field of the chip. To date, many OPA devices have been motivated by LiDAR and optical communications applications, so their capabilities were limited to steering light beams in the far field using linear phase gradients. However, this approach does not generate the tightly focused beam required for optical trapping.

In their new approach, the MIT researchers used semiconductor manufacturing processes to fabricate a series of micro-antennas onto the chip. By creating specific phase patterns for each antenna, the researchers found that they could generate a tightly focused beam of light.

Each antenna’s optical signal was also tightly controlled by varying the input laser wavelength to provide an active spatial tuning for tweezing particles. The focused light beam emitted by the chip could therefore be shaped and steered to capture particles located millimetres above the surface of the chip, making it suitable for biological studies.

The researchers used the OPA tweezers to optically steer and non-mechanically trap polystyrene microparticles at up to 5 mm above the chip’s surface. They also demonstrated stretching of mouse lymphoblast cells, in the first known cell experiment to use single-beam integrated optical tweezers.

The researchers point out that this is the first demonstration of trapping particles over millimetre ranges, with the operating distance of the new device orders of magnitude greater than other integrated optical tweezers. Plasmonic, waveguide and resonator tweezers, for example, can only operate at 1 µm above the surface, while microlens-based tweezers have been able to operate at 20 µm distances.

Importantly, the device is completely reusable and biocompatible, because the biological samples can be trapped and undergo manipulation while remaining within a sterile coverslip. This ensures that both the biological media and the chip stay free from contamination without needing complex microfluidics packaging.

The work in this study provides a new type of modality for integrated optical tweezers, expanding their use into the biological domain to perform experiments on proteins and DNA, for example, as well as to sort and manipulate cells.

The researchers say that they hope to build on this research by creating a device with an adjustable focal height for the light beam, as well as introduce multiple trap sites to manipulate biological particles in more complex ways and employ the device to examine more biological systems.

The optical trap is described in Nature Communications.

The post Chip-based optical tweezers manipulate microparticles and cells from a distance appeared first on Physics World.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

光学陷阱 芯片光学镊子 生物研究 微粒操控
相关文章