MarkTechPost@AI 2024年09月25日
Subgroups: An Open-Source Python Library for Efficient and Customizable Subgroup Discovery
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

Subgroups 是一个开源的 Python 库,旨在简化子组发现 (SD) 算法的使用。它通过提供一个用户友好的界面,并基于经过验证的科学研究,确保算法实现的可靠性。Subgroups 库采用模块化设计,允许用户自定义和扩展功能,并已在多个研究项目中得到应用。

😊 **Subgroups 库是为子组发现 (SD) 算法设计的模块化 Python 工具,其架构包含核心元素、质量度量、数据结构和算法。** 该库包含用于关键 SD 组件(如选择器、模式和子组)的类。该库实现了各种 SD 算法,例如 VLSD 和 SDMap,以及多个质量度量,包括 WRAcc 和二项式检验。它支持静默和日志模式以实现灵活的输出,并提供广泛的单元测试以确保功能正常。该库使用 Python 3 构建,并利用 pandas,旨在易于扩展并确保算法性能可靠。

🤩 **Subgroups 库提供了一个包含手册和示例的综合生态系统,使用户和开发人员能够熟悉 SD 技术和库的实现。** 它提供了实用示例,例如 VLSD 算法,并且是开源的,使研究人员能够在各个领域应用关键的 SD 算法。这种多功能性使该库能够在以前无法使用 SD 工具的过去和正在进行的研究中使用,并有助于产生新的科学知识。

🥳 **除了作为研究的宝贵资源外,该库还用于现实世界的项目,已被下载超过 7,100 次,并在几篇科学论文中出现。** 它允许在统一框架内对 SD 算法进行公平的比较和评估,避免了组合多个机器学习库的需要。Subgroups 库不断发展,为进一步扩展和整合新算法提供了可能性。它已在多个著名的研究项目和合作中得到应用,证明了其在学术和实践环境中的影响力不断增强。

🧐 **Subgroups 库是一个开源的 Python 工具,可以简化在机器学习和数据科学中使用 SD 算法。** 其主要功能包括:由于其原生 Python 实现而提高的效率、模仿 scikit-learn 的用户友好界面以及基于科学出版物的可靠算法实现。该库的模块化设计允许轻松自定义,使用户能够添加新的算法、质量度量和数据结构。它已在众多研究论文和项目中得到应用,突出了其在各个领域的有效性和适应性。未来的更新将包括额外的 SD 算法和搜索策略。

Subgroup Discovery (SD) is a supervised machine learning method used for exploratory data analysis to identify relationships (subgroups) within a dataset relative to a target variable. Key components in SD algorithms include the search strategy, which explores the problem’s search space, and the quality measure, which evaluates the subgroups identified. Despite the effectiveness of SD and the range of algorithms available, only some Python libraries offer state-of-the-art SD tools. Existing libraries like Vikamine and by subgroups lack comprehensive support, highlighting the need for a reliable, well-documented library that integrates popular SD algorithms.

Researchers from the Med AI Lab at the University of Murcia and the Murcian Bio-Health Institute have introduced Subgroups, an open-source Python library designed to simplify SD algorithms. Built for efficiency in native Python, the library provides a user-friendly interface modeled after scikit-learn, making it accessible to experts and non-experts. The library ensures trustworthy algorithm implementations based on established scientific research, and its modular design allows for customization and expansion. Subgroups are already employed in multiple research papers and projects and Are available on GitHub, PyPI, and Anaconda.org.

The Subgroups Library is a modular Python tool designed for SD algorithms, following an architecture with core elements, quality measures, data structures, and algorithms. It includes classes for key SD components like selectors, patterns, and subgroups. The library implements various SD algorithms, such as VLSD and SDMap, along with multiple quality measures, including WRAcc and Binomial Tests. It supports silent and log modes for flexible output and offers extensive unit tests to ensure correct functionality. Built with Python 3 and leveraging pandas, the library is designed for easy extension and reliable algorithm performance.

The Subgroups Library offers a comprehensive ecosystem with manuals and examples, allowing users and developers to familiarize themselves with SD techniques and the library’s implementation. It provides practical examples, such as the VLSD algorithm, and is open-source, enabling researchers to apply key SD algorithms across various domains. This versatility allows the library to be utilized in both past and ongoing research, where SD tools were previously unavailable and contributes to generating new scientific knowledge.

In addition to being a valuable resource for research, the library is also used in real-world projects, having been downloaded over 7,100 times and featured in several scientific papers. It allows for fair comparison and evaluation of SD algorithms within a unified framework, avoiding the need to combine multiple machine learning libraries. The Subgroups Library is continuously evolving, offering the potential for further expansion and the integration of new algorithms. It has already been applied in several notable research projects and collaborations, demonstrating its growing impact in academic and practical contexts.

The Subgroups Library is an open-source Python tool that simplifies using SD algorithms in machine learning and data science. Key features include improved efficiency due to its native Python implementation, a user-friendly interface modeled after scikit-learn, and reliable algorithm implementations based on scientific publications. The library’s modular design allows easy customization, enabling users to add new algorithms, quality measures, and data structures. It has already been applied in numerous research papers and projects, highlighting its effectiveness and adaptability in various domains. Future updates will include additional SD algorithms and search strategies.


Check out the Paper and GitHub. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. If you like our work, you will love our newsletter..

Don’t Forget to join our 50k+ ML SubReddit

FREE AI WEBINAR: ‘SAM 2 for Video: How to Fine-tune On Your Data’ (Wed, Sep 25, 4:00 AM – 4:45 AM EST)

The post Subgroups: An Open-Source Python Library for Efficient and Customizable Subgroup Discovery appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

子组发现 机器学习 数据科学 开源库 Python
相关文章