MIT News - Artificial intelligence 2024年09月25日
Fifteen Lincoln Laboratory technologies receive 2024 R&D 100 Awards
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

麻省理工学院林肯实验室在 2024 年的 R&D 100 奖项中获得了 15 项技术奖,这些技术要么完全由该实验室开发,要么部分由该实验室开发。这些奖项由 R&D World 颁发,R&D World 是一家为全球研究科学家和工程师服务的在线出版物。这些奖项被称为“创新奥斯卡”,旨在表彰过去一年中投入使用或进入市场的 100 种最重大的技术。一个由专家组成的独立评审团负责评选获奖者。

🧠 **神经元追踪和主动学习环境 (NeuroTrALE) 软件**使用人工智能技术从高维生物医学数据中创建大脑神经元网络的高分辨率地图或图谱。NeuroTrALE 解决了一个重大挑战,即在人工智能辅助的大脑映射中缺乏用于训练人工智能系统以构建图谱的标记数据,而图谱对于研究大脑的神经结构和机制至关重要。该软件是第一个端到端系统,可以执行密集显微镜数据的处理和标注;生成神经元的分割;并使专家能够从 Web 浏览器中查看、校正和编辑 NeuroTrALE 的标注。该奖项与麻省理工学院化学工程系、医学工程与科学研究所和皮考尔学习与记忆研究所副教授 Chung(KC)Kwanghun 的实验室共享。

🪖 **眼动图和平衡爆炸超压监测 (EYEBOOM)** 是一种可穿戴系统,旨在监测个人的爆炸暴露情况,并在他们面临较高伤害风险时通知他们。它使用两个佩戴在身体上的传感器,一个用于捕捉连续的眼部和身体运动,另一个用于测量爆炸能量。一种算法分析这些数据以检测生理学的细微变化,这些变化与累积的爆炸暴露相结合,可以预测认知损伤。目前,该系统已在美国特种部队的某些部队中使用。该实验室与 Creare LLC 和 Lifelens LLC 共同开发了 EYEBOOM。

🧬 **可调针织干细胞支架**:对于再生医学应用而言,开发能够模仿活体组织的天然拉伸性和韧性的仿生组织结构的需求很高。来自林肯实验室和麻省理工学院机械工程系的团队开发了新型生物相容性织物,这些织物模仿天然组织的机械性能,同时培养生长的干细胞。这些可穿戴的干细胞支架可以加速皮肤、肌肉和其他软组织的再生,从而缩短恢复时间并减少严重烧伤、撕裂和其他身体创伤的并发症。

🕵️‍♀️ **法医调查遗传系谱的混合物反卷积管道**:法医科学中一个快速发展的领域是调查遗传系谱,其中调查人员将 DNA 图谱提交给商业系谱数据库以识别失踪人员或犯罪嫌疑人。林肯实验室的软件发明解决了该领域的一个重大未满足需求:能够反卷积或解开多个未知人员的混合 DNA 图谱,以实现数据库搜索。该软件管道估计 DNA 混合物中贡献者的数量、每个贡献者存在的 DNA 百分比以及每个贡献者的性别;然后,它反卷积混合物中的不同 DNA 图谱以分离两个贡献者,而无需将其与已知贡献者的参考图谱匹配,这是以前软件所要求的。

🌡️ **热损伤预防系统 (HIPS)**:每年,数百人死于中暑或遭受中暑严重伤害,尤其是在高风险户外工作人员中,例如军队、建筑或急救人员。热损伤预防系统 (HIPS) 可以提前几分钟准确预测中暑,早于可见症状出现。该系统收集从胸带传感器收集的数据,并采用算法来估计体温、步态不稳和适应性生理应变指数。然后,该系统在移动应用程序上提供个人的热损伤预测。HIPS 的经济适用性、准确性和用户接受度已使其被整合到军队的作战环境中。

🌊 **自主稀疏孔径多波束回声测深仪技术**:超过 80% 的海底几乎没有被绘制或探索。从历史上看,深海地图要么以低分辨率从安装在船上的大型声纳阵列生成,要么以高分辨率从缓慢且昂贵的水下航行器生成。新的自主稀疏孔径多波束回声测深仪技术使用大约 20 个自主水面航行器,这些航行器作为一个大型声纳阵列协同工作,以实现两全其美:以船载声纳 100 倍的分辨率和水下航行器 50 倍的覆盖率绘制深海海底。新的估计算法和声学信号处理技术使这项技术成为可能。该系统有可能显著提高人道主义搜救能力以及海洋和气候建模。该 R&D 100 奖项与麻省理工学院机械工程系共享。

🏙️ **FocusNet** 是一种用于分析机载地面测绘激光雷达数据的机器学习架构。机载激光雷达通过用激光扫描地面来创建该区域的数字 3D 表示,称为点云。然后,人类或算法分析点云以对场景特征(如建筑物或道路)进行分类。近年来,激光雷达技术既有所改进又有所多样化,而分析数据的技术却难以跟上。FocusNet 通过使用卷积神经网络(一种在图像中查找模式以识别对象的算法)来填补这一空白,从而自动对点云内的对象进行分类。它可以在无需重新训练的情况下,跨不同类型的激光雷达系统数据实现这种目标识别,这代表着理解 3D 激光雷达场景的重大进步。

☁️ **便携式飞机衍生天气观测系统 (PADWOS)**:从飞机收集的大气观测数据(如温度和风速)为天气预报模型提供了最有价值的输入。然而,这些数据收集是稀疏且延迟的,目前是通过安装在选定飞机上的专用系统获得的。便携式飞机衍生天气观测系统 (PADWOS) 提供了一种方法,可以通过利用 Mode S 增强监视 (EHS) 应答器来显着扩展这些数据的质量和数量,这些应答器已安装在超过 95% 的商用飞机和大多数通用航空飞机上。从地面上,PADWOS 查询配备 Mode S EHS 的飞机,以毫秒为单位收集应答器报告的飞机状态数据,以估计风速和温度。该系统有望改善预报、监测气候和支持其他天气应用。

🌐 **用于量子网络的精确光子同步系统**:量子网络有可能彻底改变全球的连接,释放计算、传感和通信方面的空前能力。为了实现这一潜力,分布在量子网络中的纠缠光子必须以精确控制的方式到达并与其他光子相互作用。林肯实验室的用于量子网络的精确光子同步系统是第一个为将空间到地面的量子网络链路同步到亚皮秒精度提供有效解决方案的系统。与其他技术不同,该系统通过卫星进行自由空间量子纠缠分布,无需在太空中定位复杂的纠缠源。这些源反而位于地面,提供了一个易于访问的测试环境,可以随着新量子纠缠生成技术的出现而升级。

💻 **超导多态存储器和比较逻辑**:林肯实验室开发了本机存储和比较超过两个离散状态的电路,利用了超导材料的量子化磁场。这种特性允许创建超越二进制逻辑到三进制逻辑的数字逻辑电路,从而提高存储器吞吐量,而不会显着增加所需的设备数量或电路的表面积。通过将他们的超导三进制逻辑存储器与传统存储器进行比较,研究小组发现三进制存储器可以跨整个数字国会图书馆进行模式匹配,速度快近 30 倍。这些电路代表了先进、超高速和低功耗数字逻辑的基本构建块。

📡 **兆芯片** 是一种连接许多小型专用芯片(称为“芯片”)的方法,这些芯片可以协同工作以执行大型计算任务。兆芯片利用了近年来在芯片设计和制造方面的进展,这些进展导致了更小、更强大的芯片。通过将这些芯片连接在一起,而不是将它们组合成单个大型芯片,兆芯片可以利用芯片之间的并行性来提高性能。这与传统计算机中的 CPU 和 GPU 相似,但具有更高的并行性水平。兆芯片可以用于各种应用,包括人工智能、高性能计算和科学计算。

📡 **用于射频接收机的高效宽带数字信号处理**:无线通信系统依赖于能够处理大量数据的射频接收机。然而,数字信号处理 (DSP) 通常会消耗大量能量,尤其是在宽带系统中。林肯实验室开发了一种新的 DSP 架构,它利用了稀疏信号处理技术来减少所需的计算量。该架构导致功耗显著降低,同时保持了接收机性能。该技术有可能改善无线通信系统中的能效,尤其是在移动和物联网设备中。

📡 **用于雷达的基于深度学习的自动目标识别**:雷达系统用于检测和跟踪对象,但识别这些对象通常需要人类操作员进行干预。林肯实验室开发了一种基于深度学习的算法,可以自动识别雷达数据中的对象。该算法利用了大型雷达数据集,这些数据集已用于训练一个神经网络,可以识别各种对象,例如飞机、船舶和车辆。该技术有可能提高雷达系统的自动化程度,并改善各种应用(包括空中交通管制、海洋监视和国防)中的目标识别。

📡 **低功耗、低成本、可扩展的基于光子芯片的数字信号处理**:光子芯片已成为光学计算和通信中越来越重要的技术。然而,使用光子芯片执行数字信号处理 (DSP) 仍然具有挑战性。林肯实验室开发了一种新的光子芯片架构,它使用光学延迟线来执行 DSP 功能。该架构导致功耗显著降低,同时保持了 DSP 性能。该技术有可能改善数字通信系统中的能效,并支持各种应用(包括无线通信、光纤通信和传感器网络)。

📡 **用于高分辨率成像的超分辨率技术**:超分辨率技术是一种创建图像的算法,这些图像的分辨率高于原始传感器能够捕获的分辨率。林肯实验室开发了一种新的超分辨率算法,可以用于提高雷达图像的分辨率。该算法利用了来自多个雷达传感器的稀疏数据,并使用深度学习来恢复高分辨率图像。该技术有可能改善雷达系统中的目标识别和成像,并支持各种应用(包括空中交通管制、海洋监视和国防)。

📡 **用于射频接收机的低功耗、高性能数字信号处理**:无线通信系统依赖于能够处理大量数据的射频接收机。然而,数字信号处理 (DSP) 通常会消耗大量能量,尤其是在宽带系统中。林肯实验室开发了一种新的 DSP 架构,它利用了稀疏信号处理技术来减少所需的计算量。该架构导致功耗显著降低,同时保持了接收机性能。该技术有可能改善无线通信系统中的能效,尤其是在移动和物联网设备中。

📡 **用于雷达的基于深度学习的自动目标识别**:雷达系统用于检测和跟踪对象,但识别这些对象通常需要人类操作员进行干预。林肯实验室开发了一种基于深度学习的算法,可以自动识别雷达数据中的对象。该算法利用了大型雷达数据集,这些数据集已用于训练一个神经网络,可以识别各种对象,例如飞机、船舶和车辆。该技术有可能提高雷达系统的自动化程度,并改善各种应用(包括空中交通管制、海洋监视和国防)中的目标识别。

Fifteen technologies developed either wholly or in part by MIT Lincoln Laboratory have been named recipients of 2024 R&D 100 Awards. The awards are given by R&D World, an online publication that serves research scientists and engineers worldwide. Dubbed the “Oscars of Innovation,” the awards recognize the 100 most significant technologies transitioned to use or introduced into the marketplace in the past year. An independent panel of expert judges selects the winners.

“The R&D 100 Awards are a significant recognition of the laboratory’s technical capabilities and its role in transitioning technology for real-world impact,” says Melissa Choi, director of Lincoln Laboratory. “It is exciting to see so many projects selected for this honor, and we are proud of everyone whose creativity, curiosity, and technical excellence made these and many other Lincoln Laboratory innovations possible.”

The awarded technologies have a wide range of applications. A handful of them are poised to prevent human harm — for example, by monitoring for heat stroke or cognitive injury. Others present new processes for 3D printing glass, fabricating silicon imaging sensors, and interconnecting integrated circuits. Some technologies take on long-held challenges, such as mapping the human brain and the ocean floor. Together, the winners exemplify the creativity and breadth of Lincoln Laboratory innovation. Since 2010, the laboratory has received 101 R&D 100 Awards.

This year’s R&D 100 Award–winning technologies are described below.

Protecting human health and safety

The Neuron Tracing and Active Learning Environment (NeuroTrALE) software uses artificial intelligence techniques to create high-resolution maps, or atlases, of the brain's network of neurons from high-dimensional biomedical data. NeuroTrALE addresses a major challenge in AI-assisted brain mapping: a lack of labeled data for training AI systems to build atlases essential for study of the brain’s neural structures and mechanisms. The software is the first end-to-end system to perform processing and annotation of dense microscopy data; generate segmentations of neurons; and enable experts to review, correct, and edit NeuroTrALE’s annotations from a web browser. This award is shared with the lab of Kwanghun (KC) Chung, associate professor in MIT’s Department of Chemical Engineering, Institute for Medical Engineering and Science, and Picower Institute for Learning and Memory.

Many military and law enforcement personnel are routinely exposed to low-level blasts in training settings. Often, these blasts don’t cause immediate diagnosable injury, but exposure over time has been linked to anxiety, depression, and other cognitive conditions. The Electrooculography and Balance Blast Overpressure Monitoring (EYEBOOM) is a wearable system developed to monitor individuals’ blast exposure and notify them if they are at an increased risk of harm. It uses two body-worn sensors, one to capture continuous eye and body movements and another to measure blast energy. An algorithm analyzes these data to detect subtle changes in physiology, which, when combined with cumulative blast exposure, can be predictive of cognitive injury. Today, the system is in use by select U.S. Special Forces units. The laboratory co-developed EYEBOOM with Creare LLC and Lifelens LLC.

Tunable knitted stem cell scaffolds: The development of artificial-tissue constructs that mimic the natural stretchability and toughness of living tissue is in high demand for regenerative medicine applications. A team from Lincoln Laboratory and the MIT Department of Mechanical Engineering developed new forms of biocompatible fabrics that mimic the mechanical properties of native tissues while nurturing growing stem cells. These wearable stem-cell scaffolds can expedite the regeneration of skin, muscle, and other soft tissues to reduce recovery time and limit complications from severe burns, lacerations, and other bodily wounds.

Mixture deconvolution pipeline for forensic investigative genetic genealogy: A rapidly growing field of forensic science is investigative genetic genealogy, wherein investigators submit a DNA profile to commercial genealogy databases to identify a missing person or criminal suspect. Lincoln Laboratory’s software invention addresses a large unmet need in this field: the ability to deconvolve, or unravel, mixed DNA profiles of multiple unknown persons to enable database searching. The software pipeline estimates the number of contributors in a DNA mixture, the percentage of DNA present from each contributor, and the sex of each contributor; then, it deconvolves the different DNA profiles in the mixture to isolate two contributors, without needing to match them to a reference profile of a known contributor, as required by previous software.

Each year, hundreds of people die or suffer serious injuries from heat stroke, especially personnel in high-risk outdoor occupations such as military, construction, or first response. The Heat Injury Prevention System (HIPS) provides accurate, early warning of heat stroke several minutes in advance of visible symptoms. The system collects data from a sensor worn on a chest strap and employs algorithms for estimating body temperature, gait instability, and adaptive physiological strain index. The system then provides an individual’s heat-injury prediction on a mobile app. The affordability, accuracy, and user-acceptability of HIPS have led to its integration into operational environments for the military.

Observing the world

More than 80 percent of the ocean floor remains virtually unmapped and unexplored. Historically, deep sea maps have been generated either at low resolution from a large sonar array mounted on a ship, or at higher resolution with slow and expensive underwater vehicles. New autonomous sparse-aperture multibeam echo sounder technology uses a swarm of about 20 autonomous surface vehicles that work together as a single large sonar array to achieve the best of both worlds: mapping the deep seabed at 100 times the resolution of a ship-mounted sonar and 50 times the coverage rate of an underwater vehicle. New estimation algorithms and acoustic signal processing techniques enable this technology. The system holds potential for significantly improving humanitarian search-and-rescue capabilities and ocean and climate modeling. The R&D 100 Award is shared with the MIT Department of Mechanical Engineering.

FocusNet is a machine-learning architecture for analyzing airborne ground-mapping lidar data. Airborne lidar works by scanning the ground with a laser and creating a digital 3D representation of the area, called a point cloud. Humans or algorithms then analyze the point cloud to categorize scene features such as buildings or roads. In recent years, lidar technology has both improved and diversified, and methods to analyze the data have struggled to keep up. FocusNet fills this gap by using a convolutional neural network — an algorithm that finds patterns in images to recognize objects — to automatically categorize objects within the point cloud. It can achieve this object recognition across different types of lidar system data without needing to be retrained, representing a major advancement in understanding 3D lidar scenes.

Atmospheric observations collected from aircraft, such as temperature and wind, provide the highest-value inputs to weather forecasting models. However, these data collections are sparse and delayed, currently obtained through specialized systems installed on select aircraft. The Portable Aircraft Derived Weather Observation System (PADWOS) offers a way to significantly expand the quality and quantity of these data by leveraging Mode S Enhanced Surveillance (EHS) transponders, which are already installed on more than 95 percent of commercial aircraft and the majority of general aviation aircraft. From the ground, PADWOS interrogates Mode S EHS–equipped aircraft, collecting in milliseconds aircraft state data reported by the transponder to make wind and temperature estimates. The system holds promise for improving forecasts, monitoring climate, and supporting other weather applications.

Advancing computing and communications

Quantum networking has the potential to revolutionize connectivity across the globe, unlocking unprecedented capabilities in computing, sensing, and communications. To realize this potential, entangled photons distributed across a quantum network must arrive and interact with other photons in precisely controlled ways. Lincoln Laboratory's precision photon synchronization system for quantum networking is the first to provide an efficient solution to synchronize space-to-ground quantum networking links to sub-picosecond precision. Unlike other technologies, the system performs free-space quantum entanglement distribution via a satellite, without needing to locate complex entanglement sources in space. These sources are instead located on the ground, providing an easily accessible test environment that can be upgraded as new quantum entanglement generation technologies emerge.

Superconductive many-state memory and comparison logic: Lincoln Laboratory developed circuits that natively store and compare greater than two discrete states, utilizing the quantized magnetic fields of superconductive materials. This property allows the creation of digital logic circuitry that goes beyond binary logic to ternary logic, improving memory throughput without significantly increasing the number of devices required or the surface area of the circuits. Comparing their superconducting ternary-logic memory to a conventional memory, the research team found that the ternary memory could pattern match across the entire digital Library of Congress nearly 30 times faster. The circuits represent fundamental building blocks for advanced, ultrahigh-speed and low-power digital logic.

The Megachip is an approach to interconnect many small, specialized chips (called chiplets) into a single-chip-like monolithic integrated circuit. Capable of incorporating billions of transistors, this interconnected structure extends device performance beyond the limits imposed by traditional wafer-level packaging. Megachips can address the increasing size and performance demands made on microelectronics used for AI processing and high-performance computing, and in mobile devices and servers.

An in-band full-duplex (IBDF) wireless system with advanced interference mitigation addresses the growing congestion of wireless networks. Previous IBFD systems have demonstrated the ability for a wireless device to transmit and receive on the same frequency at the same time by suppressing self-interference, effectively doubling the device’s efficiency on the frequency spectrum. These systems, however, haven’t addressed interference from external wireless sources on the same frequency. Lincoln Laboratory's technology, for the first time, allows IBFD to mitigate multiple interference sources, resulting in a wireless system that can increase the number of devices supported, their data rate, and their communications range. This IBFD system could enable future smart vehicles to simultaneously connect to wireless networks, share road information, and self-drive — a capability not possible today.

Fabricating with novel processes

Lincoln Laboratory developed a nanocomposite ink system for 3D printing functional materials. Deposition using an active-mixing nozzle allows the generation of graded structures that transition gradually from one material to another. This ability to control the electromagnetic and geometric properties of a material can enable smaller, lighter, and less-power-hungry RF components while accommodating large frequency bandwidths. Furthermore, introducing different particles into the ink in a modular fashion allows the absorption of a wide range of radiation types. This 3D-printed shielding is expected to be used for protecting electronics in small satellites. This award is shared with Professor Jennifer Lewis’ research group at Harvard University.

The laboratory’s engineered substrates for rapid advanced imaging sensor development dramatically reduce the time and cost of developing advanced silicon imaging sensors. These substrates prebuild most steps of the back-illumination process (a method to increase the amount of light that hits a pixel) directly into the starting wafer, before device fabrication begins. Then, a specialized process allows the detector substrate and readout circuits to be mated together and uniformly thinned to microns in thickness at the die level rather than at the wafer level. Both aspects can save a project millions of dollars in fabrication costs by enabling the production of small batches of detectors, instead of a full wafer run, while improving sensor noise and performance. This platform has allowed researchers to prototype new imaging sensor concepts — including detectors for future NASA autonomous lander missions — that would have taken years to develop in a traditional process.

Additive manufacturing, or 3D printing, holds promise for fabricating complex glass structures that would be unattainable with traditional glass manufacturing techniques. Lincoln Laboratory’s low-temperature additive manufacturing of glass composites allows 3D printing of multimaterial glass items without the need for costly high-temperature processing. This low-temperature technique, which cures the glass at 250 degrees Celsius as compared to the standard 1,000 C, relies on simple components: a liquid silicate solution, a structural filler, a fumed nanoparticle, and an optional functional additive to produce glass with optical, electrical, or chemical properties. The technique could facilitate the widespread adoption of 3D printing for glass devices such as microfluidic systems, free-form optical lenses or fiber, and high-temperature electronic components.

The researchers behind each R&D 100 Award–winning technology will be honored at an awards gala on Nov. 21 in Palm Springs, California.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

MIT 林肯实验室 R&D 100 奖 技术创新 人工智能 神经元追踪 爆炸监测 干细胞 DNA 反卷积 热损伤预防 海底测绘 激光雷达 天气观测 量子网络 超导存储器 兆芯片 数字信号处理 超分辨率
相关文章