MarkTechPost@AI 2024年09月23日
Exploring Input Space Mode Connectivity: Insights into Adversarial Detection and Deep Neural Network Interpretability
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

这篇研究探讨了深度神经网络的输入空间模式连接性,揭示了在产生相似预测的输入之间存在低损耗路径。该研究扩展了输入空间连接性的范围,超越了分布外样本,考虑所有可能的输入。该研究应用了参数空间模式连接性的方法来探索输入空间,为理解神经网络行为提供了见解。

🤔 研究发现,深度神经网络中存在输入空间模式连接性,即在产生相似预测的输入之间存在低损耗路径。这种现象在训练过的和未训练过的模型中都存在,表明它是一种几何效应,可以通过渗透理论解释。

🚀 该研究采用真实、插值和合成输入来探索输入空间连接性,证明了其在训练过的模型中的普遍性和简单性。研究结果增强了对模型行为的理解,特别是针对对抗性示例,并为对抗性检测和模型可解释性提供了潜在的应用。

🔍 研究方法采用多种输入生成技术,包括真实、插值和合成图像,全面分析深度神经网络中的输入空间连接性。损失景观分析研究了不同模式之间的障碍,特别是关注自然输入和对抗性示例。

📊 理论框架利用渗透理论来解释输入空间模式连接性作为高维空间中的几何现象。这种方法为理解训练过的和未训练过的网络中的连接性属性提供了基础。

📈 在预训练的视觉模型上进行的实证验证证明了不同模式之间存在低损耗路径,支持了理论主张。从这些发现中开发的对抗性检测算法突出了实际应用。

🤔 研究结果将模式连接性扩展到深度神经网络的输入空间,揭示了输入之间的低损耗路径,从而产生相似的预测。训练过的模型在连接的输入之间表现出简单的、近乎线性的路径。

🚀 该研究基于损耗障碍高度将自然输入与对抗性示例区分开来,真实-真实对显示出较低的障碍,而真实-对抗性对显示出较高的、复杂的障碍。这种通过渗透理论解释的几何现象在未训练的模型中仍然存在。

🔍 这些发现增强了对模型行为的理解,改进了对抗性检测方法,并有助于DNN的可解释性。

📈 该研究表明,深度神经网络的输入空间中存在模式连接性,并为对抗性检测和模型可解释性提供了新见解。

🤔 该研究证明了用于图像分类的深度网络的输入空间中存在模式连接性。低损耗路径始终连接不同的模式,揭示了输入空间中的稳健结构。

🚀 该研究基于线性插值路径上的损耗障碍高度将自然输入与对抗性攻击区分开来。这种见解促进了对抗性检测机制并增强了深度神经网络的可解释性。

🔍 这些发现支持了模式连接性是高维几何的内在属性,可以通过渗透理论解释的假设。

Input space mode connectivity in deep neural networks builds upon research on excessive input invariance, blind spots, and connectivity between inputs yielding similar outputs. The phenomenon exists generally, even in untrained networks, as evidenced by empirical and theoretical findings. This research expands the scope of input space connectivity beyond out-of-distribution samples, considering all possible inputs. The study adapts methods from parameter space mode connectivity to explore input space, providing insights into neural network behavior.

The research draws on prior work identifying high-dimensional convex hulls of low loss between multiple loss minimizers, which is crucial for analyzing training dynamics and mode connectivity. Feature visualization techniques, optimizing inputs for adversarial attacks further contribute to understanding input space manipulation. By synthesizing these diverse areas of study, the research presents a comprehensive view of input space mode connectivity, emphasizing its implications for adversarial detection and model interpretability while highlighting the intrinsic properties of high-dimensional geometry in neural networks.

The concept of mode connectivity in neural networks extends from parameter space to input space, revealing low-loss paths between inputs yielding similar predictions. This phenomenon, observed in both trained and untrained models, suggests a geometric effect explicable through percolation theory. The study employs real, interpolated, and synthetic inputs to explore input space connectivity, demonstrating its prevalence and simplicity in trained models. This research advances the understanding of neural network behavior, particularly regarding adversarial examples, and offers potential applications in adversarial detection and model interpretability. The findings provide new insights into the high-dimensional geometry of neural networks and their generalization capabilities.

The methodology employs diverse input generation techniques, including real, interpolated, and synthetic images, to comprehensively analyze input space connectivity in deep neural networks. Loss landscape analysis investigates barriers between different modes, particularly focusing on natural inputs and adversarial examples. The theoretical framework utilizes percolation theory to explain input space mode connectivity as a geometric phenomenon in high-dimensional spaces. This approach provides a foundation for understanding connectivity properties in both trained and untrained networks.

Empirical validation on pretrained vision models demonstrates the existence of low-loss paths between different modes, supporting the theoretical claims. An adversarial detection algorithm developed from these findings highlights practical applications. The methodology extends to untrained networks, emphasizing that input space mode connectivity is a fundamental characteristic of neural architectures. Consistent use of cross-entropy loss as an evaluation metric ensures comparability across experiments. This comprehensive approach combines theoretical insights with empirical evidence to explore input space mode connectivity in deep neural networks.

Results extend mode connectivity to the input space of deep neural networks, revealing low-loss paths between inputs, yielding similar predictions. Trained models exhibit simple, near-linear paths between connected inputs. The research distinguishes natural inputs from adversarial examples based on loss barrier heights, with real-real pairs showing low barriers and real-adversarial pairs displaying high, complex ones. This geometric phenomenon explained through percolation theory, persists in untrained models. The findings enhance understanding of model behavior, improve adversarial detection methods, and contribute to DNN interpretability.

In conclusion, the research demonstrates the existence of mode connectivity in the input space of deep networks trained for image classification. Low-loss paths consistently connect different modes, revealing a robust structure in the input space. The study differentiates natural inputs from adversarial attacks based on loss barrier heights along linear interpolant paths. This insight advances adversarial detection mechanisms and enhances deep neural network interpretability. The findings support the hypothesis that mode connectivity is an intrinsic property of high-dimensional geometry, explainable through percolation theory.


Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. If you like our work, you will love our newsletter..

Don’t Forget to join our 50k+ ML SubReddit

FREE AI WEBINAR: ‘SAM 2 for Video: How to Fine-tune On Your Data’ (Wed, Sep 25, 4:00 AM – 4:45 AM EST)

The post Exploring Input Space Mode Connectivity: Insights into Adversarial Detection and Deep Neural Network Interpretability appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度学习 神经网络 对抗性示例 输入空间 模式连接性 渗透理论 模型可解释性
相关文章