MarkTechPost@AI 2024年09月22日
Chain-of-Thought (CoT) Prompting: A Comprehensive Analysis Reveals Limited Effectiveness Beyond Math and Symbolic Reasoning
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

一项对100多篇论文的元分析和跨20个数据集和14个模型的原创评估表明,CoT提示在数学和逻辑推理任务方面表现出显著优势,但在其他领域却改善甚微。CoT在MMLU基准测试中的表现尤为突出,尤其是在涉及符号运算的问题或答案中。

🤔 **CoT提示在数学和逻辑推理任务方面表现出显著优势,但在其他领域却改善甚微。**研究人员发现,CoT提示在数学和逻辑推理任务方面表现出显著优势,但在其他领域却改善甚微。例如,CoT在MMLU基准测试中的表现尤为突出,尤其是在涉及符号运算的问题或答案中。研究人员还分析了CoT的规划和执行方面,并将CoT与工具增强型LLM进行了比较,发现CoT的主要优势在于其能够处理需要详细跟踪和计算的任务。

🤔 **CoT提示的性能提升主要归因于其跟踪问题解决过程中的中间步骤的能力。**研究人员发现,CoT提示的性能提升主要归因于其跟踪问题解决过程中的中间步骤的能力。然而,专门的符号求解器在这些领域始终优于CoT。这意味着,虽然CoT在某些情况下可以提高LLM的推理能力,但它可能无法完全取代其他更专门的推理方法。

🤔 **这项研究强调了需要持续创新语言模型推理能力,以应对自然语言处理中的各种挑战。**这项研究表明,CoT提示并不是解决所有推理问题的万能药。研究人员强调了需要持续创新语言模型推理能力,以应对自然语言处理中的各种挑战。未来的研究需要探索新的推理方法,并对各种推理方法进行更全面的评估,以确定它们在不同任务中的适用性。

🤔 **研究人员还分析了CoT的规划和执行方面,并将CoT与工具增强型LLM进行了比较。**研究人员还分析了CoT的规划和执行方面,并将CoT与工具增强型LLM进行了比较。他们发现,对于数学推理等任务,将规划和执行(通过CoT或直接求解器)结合起来,比直接回答效果更好。然而,仅靠规划并不能解释大部分性能提升。CoT和规划+CoT求解器方法在准确性方面取得了最大的改进,尤其是在以数学为主的数据集中。此外,规划+工具求解器方法在大多数情况下都优于其他方法,突出了LLM在执行和跟踪复杂步骤方面的局限性,而专门的符号求解器则可以克服这些局限性。

🤔 **这项研究使用了详细的方法评估了不同模型、数据集和提示技术下的CoT。**这项研究使用了详细的方法评估了不同模型、数据集和提示技术下的CoT。它主要关注英语,即通常用于一般推理任务的指令微调语言模型。所选数据集涵盖了各种推理类别,如常识、知识、符号、数学和软推理。在实现方面,研究人员使用了vLLM,这是一个高吞吐量推理包,并对所有模型应用了贪婪解码。大多数提示源自Llama 3.1评估,并根据一致性进行了调整,并且为每个数据集和模型创建了自定义答案解析器,以确保准确的结果提取和分析。

🤔 **这项研究使用了详细的方法评估了不同模型、数据集和提示技术下的CoT。**研究人员发现,CoT在不同模型和数据集上的有效性存在显著差异。对于需要详细跟踪和计算的任务,如数学推理,将规划和执行(通过CoT或直接求解器)结合起来,比直接回答效果更好。然而,仅靠规划并不能解释大部分性能提升。CoT和规划+CoT求解器方法在准确性方面取得了最大的改进,尤其是在以数学为主的数据集中。此外,规划+工具求解器方法在大多数情况下都优于其他方法,突出了LLM在执行和跟踪复杂步骤方面的局限性,而专门的符号求解器则可以克服这些局限性。

Chain-of-thought (CoT) prompting has emerged as a popular technique to enhance large language models’ (LLMs) problem-solving abilities by generating intermediate steps. Despite its better performance in mathematical reasoning, CoT’s effectiveness in other domains remains questionable. Current research is focused more on mathematical problems, possibly overlooking how CoT could be applied more broadly. In some areas, CoT shows limited improvement or even decreased performance. This narrow focus on mathematical reasoning raises concerns about the generalizability of CoT and highlights the need for a more detailed evaluation of reasoning methods across different problem types.

Existing research includes various approaches to enhance LLMs’ reasoning capabilities beyond CoT. One of the approaches is Long-horizon planning which has emerged as a promising area in tasks like complex decision-making sequences. However, the debate on CoT’s effectiveness in planning tasks remains divided, with studies supporting and questioning its utility. Alternative methods like tree-of-thought have been developed to address planning challenges, resulting in more complex systems. Theoretical research indicates that CoT augments Transformers, opening the door for more advanced CoT variants. Recent work on internalizing CoT also suggests that the full potential of explicit intermediate token generation has yet to be realized.

Researchers from the University of Texas at Austin, Johns Hopkins University, and Princeton University have proposed a comprehensive evaluation of CoT prompting across diverse task domains. It includes a meta-analysis of over 100 CoT-related papers and original evaluations spanning 20 datasets and 14 models. The performance benefits of CoT are more focused on mathematical and logical reasoning tasks, with minimal improvements in other areas. It shows significant advantages on the MMLU benchmark, especially when questions or responses involve symbolic operations. The researchers also break down CoT’s effectiveness by analyzing its planning and execution aspects and comparing it to tool-augmented LLMs.

The researchers applied detailed methodology to evaluate CoT across various models, datasets, and prompting techniques. It focuses more on English, instruction-tuned language models commonly used for general reasoning tasks. The selected datasets cover various reasoning categories, like commonsense, knowledge, symbolic, mathematical, and soft reasoning. For implementation, researchers used vLLM, a high-throughput inference package, with greedy decoding applied to all models. Most prompts are derived from Llama 3.1 evaluations, with adjustments made for consistency, and custom answer parsers are created for each dataset and model to ensure accurate result extraction and analysis.   

The evaluation results demonstrate significant variations in the effectiveness of CoT across diverse models and datasets. The combination of planning and execution (either through CoT or a direct solver) for tasks like mathematical reasoning, outperforms direct answering. However, the planning alone does not account for most of the performance gains. CoT and Plan + CoT solver methods show the strongest accuracy improvements, especially in math-heavy datasets. Moreover, the Plan + Tool solver method outperforms other methods across most scenarios, highlighting the limitations of LLMs in executing and tracking complex steps compared to specialized symbolic solvers. These findings indicate that CoT’s main advantage lies in its ability, to handle tasks that need detailed tracing and computation.

In this paper, researchers have introduced a comprehensive evaluation of CoT, prompting across diverse task domains. This evaluation of CoT prompting reveals its limited effectiveness across diverse language tasks. The benefits of CoT are more focused on mathematical and formal logic problems, regardless of prompting strategies or model strength. Further analysis shows that CoT’s performance improvements are largely due to its ability to trace intermediate steps in problem-solving. However, dedicated symbolic solvers consistently outperform CoT in these areas. This study highlighted the need for ongoing innovation in language model reasoning capabilities to address the full range of challenges in natural language processing.


Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. If you like our work, you will love our newsletter..

Don’t Forget to join our 50k+ ML SubReddit

FREE AI WEBINAR: ‘SAM 2 for Video: How to Fine-tune On Your Data’ (Wed, Sep 25, 4:00 AM – 4:45 AM EST)

The post Chain-of-Thought (CoT) Prompting: A Comprehensive Analysis Reveals Limited Effectiveness Beyond Math and Symbolic Reasoning appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

CoT 提示 推理 语言模型 人工智能
相关文章