MarkTechPost@AI 2024年09月19日
Qwen 2.5 Models Released: Featuring Qwen2.5, Qwen2.5-Coder, and Qwen2.5-Math with 72B Parameters and 128K Context Support
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

阿里巴巴发布了其最新的系列大型语言模型Qwen 2.5,涵盖了从 0.5 亿到 720 亿参数的多个版本,在编码、数学、指令遵循和多语言支持等方面取得了显著进步。Qwen 2.5 系列在性能上挑战了 Llama 3.1 和 Mistral Large 2 等领先模型,并提供了针对编码和数学优化的专用模型 Qwen 2.5-Coder 和 Qwen 2.5-Math。

🚀 **Qwen 2.5 的强大性能**:Qwen 2.5 在性能上与 Llama 3.1 和 Mistral Large 2 等领先模型相媲美,即使参数数量较少。它在 MMLU、HumanEval 和 MATH 等基准测试中取得了显著的进步,展现出其在结构化推理、编码和数学问题解决方面的强大能力。

📚 **长文本处理和多语言支持**:Qwen 2.5 支持高达 128,000 个令牌的上下文长度,使其能够处理法律文件分析或长篇内容生成等需要大量输入的任务。它还支持 29 种语言,包括中文、英文、法语、西班牙语、葡萄牙语、德语、意大利语、俄语、日语、韩语、越南语、泰语和阿拉伯语等,使其能够在各种语言和文化环境中使用。

💻 **Qwen 2.5-Coder 和 Qwen 2.5-Math 专用模型**:阿里巴巴还发布了 Qwen 2.5-Coder 和 Qwen 2.5-Math 等专用模型,分别针对编码和数学领域进行优化。这些模型旨在在软件开发、自动代码生成和数学推理等任务中发挥重要作用。

💡 **Qwen 2.5 的关键架构特性**:Qwen 2.5 系列模型采用了旋转位置嵌入 (RoPE)、Swish-Gated 线性单元 (SwiGLU)、RMSNorm 和带 QKV 偏差的注意力机制等关键架构特性,这些特性增强了模型的效率和适应性。

🚀 **Qwen 2.5 的未来潜力**:Qwen 2.5 的发布标志着人工智能和机器学习能力的重大飞跃。它在长文本处理、多语言支持、指令遵循和结构化数据生成方面的改进,使其有望在各个行业发挥关键作用。随着人工智能技术的不断发展,像 Qwen 2.5 这样的模型将成为塑造生成式语言技术未来的重要力量。

The Qwen team from Alibaba has recently made waves in the AI/ML community by releasing their latest series of large language models (LLMs), Qwen2.5. These models have taken the AI landscape by storm, boasting significant capabilities, benchmarks, and scalability upgrades. From 0.5 billion to 72 billion parameters, Qwen2.5 has introduced notable improvements across several key areas, including coding, mathematics, instruction-following, and multilingual support. The release includes specialized models, such as Qwen2.5-Coder and Qwen2.5-Math, further diversifying the range of applications for which these models can be optimized.

Overview of the Qwen2.5 Series

One of the most exciting aspects of Qwen2.5 is its versatility and performance, which allows it to challenge some of the most powerful models on the market, including Llama 3.1 and Mistral Large 2. Qwen2.5’s top-tier variant, the 72 billion parameter model, directly rivals Llama 3.1 (405 billion parameters) and Mistral Large 2 (123 billion parameters) in terms of performance, demonstrating the strength of its underlying architecture despite having fewer parameters.

The Qwen2.5 models were trained on an extensive dataset containing up to 18 trillion tokens, providing them with vast knowledge and data for generalization. Qwen2.5’s benchmark results show massive improvements over its predecessor, Qwen2, across several key metrics. The models have achieved significantly higher scores on the MMLU (Massive Multitask Language Understanding) benchmark, exceeding 85. HumanEval with scores over 85, and MATH benchmarks where it scored above 80. These improvements make Qwen2.5 one of the most capable models in domains requiring structured reasoning, coding, and mathematical problem-solving.

Long-Context and Multilingual Capabilities

One of Qwen2.5’s defining features is its long-context processing ability, supporting a context length of up to 128,000 tokens. This is crucial for tasks requiring extensive and complex inputs, such as legal document analysis or long-form content generation. Additionally, the models can generate up to 8,192 tokens, making them ideal for generating detailed reports, narratives, or even technical manuals.

The Qwen2.5 series supports 29 languages, making it a robust tool for multilingual applications. This range includes major global languages like Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, and Arabic. This extensive multilingual support ensures that Qwen2.5 can be used for various tasks across diverse linguistic and cultural contexts, from content generation to translation services.

Specialization with Qwen2.5-Coder and Qwen2.5-Math

Alibaba has also released specialized variants with base models: Qwen2.5-Coder and Qwen2.5-Math. These specialized models focus on domains like coding and mathematics, with configurations optimized for these specific use cases. 

Qwen2.5: 0.5B, 1.5B, and 72B Models

Three key variants stand out among the newly released models: Qwen2.5-0.5B, Qwen2.5-1.5B, and Qwen2.5-72B. These models cover a broad range of parameter scales and are designed to address varying computational and task-specific needs.

The Qwen2.5-0.5B model, with 0.49 billion parameters, serves as a base model for general-purpose tasks. It uses a transformer-based architecture with Rotary Position Embeddings (RoPE), SwiGLU activation, and RMSNorm for normalization, coupled with attention mechanisms featuring QKV bias. While this model is not optimized for dialogue or conversational tasks, it can still handle a range of text processing and generation needs.

The Qwen2.5-1.5B model, with 1.54 billion parameters, builds on the same architecture but offers enhanced performance for more complex tasks. This model is suited for applications requiring deeper understanding and longer context lengths, including research, data analysis, and technical writing.

Finally, the Qwen2.5-72B model represents the top-tier variant with 72 billion parameters, positioning it as a competitor to some of the most advanced LLMs. Its ability to handle large datasets and extensive context makes it ideal for enterprise-level applications, from content generation to business intelligence and advanced machine learning research.

Key Architectural Features

The Qwen 2.5 series shares several key architectural advancements that make these models highly efficient and adaptable:

    RoPE (Rotary Position Embeddings): RoPE allows for the efficient processing of long-context inputs, significantly enhancing the models’ ability to handle extended text sequences without losing coherence.SwiGLU (Swish-Gated Linear Units): This activation function enhances the models’ ability to capture complex patterns in data while maintaining computational efficiency.RMSNorm: RMSNorm is a normalization technique for stabilizing training and improving convergence times. It is useful when dealing with larger models and datasets.Attention with QKV Bias: This attention mechanism improves the models’ ability to focus on relevant information within the input data, ensuring more accurate and contextually appropriate outputs.

Conclusion

The release of Qwen2.5 and its specialized variants marks a significant leap in AI and machine learning capabilities. With its improvements in long-context handling, multilingual support, instruction-following, and structured data generation, Qwen2.5 is set to play a pivotal role in various industries. The specialized models, Qwen2.5-Coder and Qwen2.5-Math, further extend the series’ utility, offering targeted solutions for coding and mathematical applications.

The Qwen2.5 series is expected to challenge leading LLMs such as Llama 3.1 and Mistral Large 2, proving that Alibaba’s Qwen team continues to push the envelope in large-scale AI models. With parameter sizes ranging from 0.5 billion to 72 billion, the series caters to a broad array of use cases, from lightweight tasks to enterprise-level applications. As AI advances, models like Qwen2.5 will be instrumental in shaping the future of generative language technology.


Check out the Model Collection on HF and Details. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. If you like our work, you will love our newsletter..

Don’t Forget to join our 50k+ ML SubReddit

FREE AI WEBINAR: ‘SAM 2 for Video: How to Fine-tune On Your Data’ (Wed, Sep 25, 4:00 AM – 4:45 AM EST)

The post Qwen 2.5 Models Released: Featuring Qwen2.5, Qwen2.5-Coder, and Qwen2.5-Math with 72B Parameters and 128K Context Support appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Qwen 2.5 大型语言模型 人工智能 机器学习 阿里巴巴
相关文章