MarkTechPost@AI 2024年09月18日
Learning and Knowledge Retrieval: A Comprehensive Framework for In-Context Learning in Large Language Models (LLMs)
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

研究人员提出了一种新的框架,用于评估大型语言模型(LLM)在上下文学习(ICL)中的机制。该框架将ICL分为两个过程:检索内部信息和从上下文实例中学习。研究表明,LLM在执行回归任务时,会利用这两种机制,并根据任务的难度、上下文实例的数量等因素调整其依赖程度。

🤔 研究人员提出了一种新的框架,用于评估大型语言模型(LLM)在上下文学习(ICL)中的机制。该框架将ICL分为两个过程:检索内部信息和从上下文实例中学习。 该框架通过分析LLM在回归任务中的表现,来评估模型在何种程度上依赖于检索已学习的知识,以及在何种程度上依赖于从上下文实例中学习新知识。 研究发现,LLM在执行回归任务时,会利用这两种机制,并根据任务的难度、上下文实例的数量等因素调整其依赖程度。例如,当任务较为简单,或者上下文实例数量较多时,LLM倾向于更多地依赖于从上下文实例中学习。反之,当任务较为复杂,或者上下文实例数量较少时,LLM倾向于更多地依赖于检索已学习的知识。

💡 研究人员发现,LLM在执行回归任务时,能够有效地利用上下文学习的能力。这表明LLM不仅能够处理文本生成和分类等任务,还能够处理更复杂的、定量的任务。 该研究为理解LLM的上下文学习机制提供了新的视角,并为优化LLM的性能提供了新的思路。通过仔细设计提示,可以帮助模型更好地学习新模式,或者更好地检索相关信息。

🚀 研究人员通过使用三种不同的LLM和多个数据集进行实验,证明了他们的框架在各种模型和数据情况下都适用。 该研究为理解LLM的上下文学习机制提供了新的视角,并为优化LLM的性能提供了新的思路。通过仔细设计提示,可以帮助模型更好地学习新模式,或者更好地检索相关信息。此外,该研究还为开发人员提供了新的工具,可以帮助他们更好地利用LLM来完成各种任务。

🌟 研究人员对LLM的上下文学习机制进行了深入的分析,并提出了一个独特的理论,即LLM在进行推断时,会同时使用现有的知识检索和从上下文实例中学习。 该理论为理解LLM的上下文学习机制提供了新的视角,并为优化LLM的性能提供了新的思路。通过仔细设计提示,可以帮助模型更好地学习新模式,或者更好地检索相关信息。此外,该研究还为开发人员提供了新的工具,可以帮助他们更好地利用LLM来完成各种任务。

🎉 研究人员为评估LLM的上下文学习机制提供了一种独特的方法,该方法系统地比较了不同LLM、数据集和提示设计下的多种ICL机制。 该研究为理解LLM的上下文学习机制提供了新的视角,并为优化LLM的性能提供了新的思路。通过仔细设计提示,可以帮助模型更好地学习新模式,或者更好地检索相关信息。此外,该研究还为开发人员提供了新的工具,可以帮助他们更好地利用LLM来完成各种任务。

Generative Large Language Models (LLMs) are capable of in-context learning (ICL), which is the process of learning from examples given within a prompt. However, research on the precise principles underlying these models’ ICL performance is still underway. The inconsistent experimental results are one of the main obstacles, making it challenging to provide a clear explanation for how LLMs make use of ICL. 

To overcome this, in recent research, a team of researchers from Michigan State University and Florida Institute for Human and Machine Cognition has introduced a framework that includes retrieving internal information and learning from in-context instances as the two processes to evaluate the mechanisms of in-context learning. In this approach, the team has concentrated on regression challenges, where the model must predict continuous values instead of labels with categories. 

It has been shown that LLMs can do regression on real-world datasets. This shows that the models are capable of handling more complicated, quantitative issues and are not just restricted to tasks related to text production or classification. In this way, targeted experiments can be conducted that evaluate the proportion of the model’s performance from retrieving previously learned information (from its training data) and the proportion from the model adjusting to new instances given in the context.

This process functions on a spectrum between two extremes: full learning, where the model successfully learns new patterns from the examples given within the prompt, and pure knowledge retrieval, where the model uses its internal knowledge without learning anything new from the in-context examples. A number of variables, such as the model’s past understanding of the job, the kind of information in the prompt, and the abundance or scarcity of in-context examples, affect how much the model depends on one mechanism over another.

The team has used three different LLMs and several datasets in their studies to test the hypothesis, demonstrating that the results hold true for a range of models and data circumstances. The findings have shed important light on how LLMs strike a balance between recalling knowledge that has already been learned and adjusting to unique situations. The team has also studied how the model’s dependence on these two processes can change depending on the task configuration, including the problem’s difficulty and the quantity of in-context instances.

The analysis also clarifies how LLM performance can be optimized through prompt engineering. Depending on the particular issue being addressed, the model’s capacity to engage in meta-learning from in-context examples can be improved, or it can be trained to concentrate more on information retrieval by carefully crafting prompts. With a better grasp of LLMs, developers can use them for a greater variety of tasks and perform better when learning new patterns and retrieving pertinent information.

The team has summarized their primary contributions as follows. 

    The team has demonstrated that LLMs can effectively complete regression tasks on realistic datasets through in-context learning.
    A unique theory has been put out for ICL, arguing that LLMs employ both pre-existing knowledge retrieval and learning from in-context instances when drawing conclusions. This approach provides a cohesive viewpoint that makes sense of the results of previous studies.
    To enable more thorough testing and insights, the team has presented a unique methodology that systematically compares several ICL mechanisms across several LLMs, datasets, and prompt designs.
    The team has offered a rapid engineering toolkit to optimize balance for particular tasks, as well as a thorough analysis of how LLMs strike a balance between accessing internal knowledge and learning from new cases.

Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. If you like our work, you will love our newsletter..

Don’t Forget to join our 50k+ ML SubReddit

FREE AI WEBINAR: ‘SAM 2 for Video: How to Fine-tune On Your Data’ (Wed, Sep 25, 4:00 AM – 4:45 AM EST)

The post Learning and Knowledge Retrieval: A Comprehensive Framework for In-Context Learning in Large Language Models (LLMs) appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 上下文学习 知识检索 回归任务 人工智能
相关文章