MarkTechPost@AI 2024年09月09日
Top Computer Vision Courses
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

计算机视觉正以前所未有的速度改变着各行各业,它赋予机器能够理解和基于视觉数据做出决策的能力。从自动驾驶汽车到医疗成像,计算机视觉的应用范围广泛且不断扩展。学习计算机视觉至关重要,因为它为你提供了开发创新解决方案的技能,例如自动化、机器人技术和 AI 驱动的分析,从而推动技术未来的发展。本文将介绍一些顶尖的计算机视觉课程,帮助你掌握这项关键技能。

👨‍💻 **入门计算机视觉和图像处理**:本课程面向初学者,介绍了计算机视觉领域,涵盖使用 Python、OpenCV 和 Pillow 进行图像处理、分类和目标检测。课程包括使用 Jupyter Labs 和 CV Studio 的动手实验,学员将创建并部署自定义计算机视觉 Web 应用程序到云端。

🤖 **计算机视觉导论**:本课程提供了对计算机视觉和图像处理的深入介绍。在两周内,你将学习从图像中提取特征,应用深度学习技术完成诸如分类等任务,并完成一个真实世界的项目,使用卷积神经网络 (CNN) 检测面部关键点。

🚀 **计算机视觉纳米学位项目**:计算机视觉纳米学位项目提供计算机视觉、深度学习和机器人技术的深度培训。在两个月内,你将通过真实世界的项目掌握目标检测、特征提取和图像分析。主要主题包括 CNN、RNN、SLAM 和目标跟踪。该项目还涵盖了实际应用,例如使用神经网络进行图像字幕、面部关键点检测和皮肤癌检测。

☁️ **Microsoft Azure 中的计算机视觉**:本课程教你如何使用 Microsoft Azure 的计算机视觉服务分析图像,为学员准备 AI-900 认证考试。课程涵盖图像分类、人脸检测和光学字符识别 (OCR),使其适合 AI 和 Azure 入门者。

🧠 **MathWorks 计算机视觉工程师专业证书**:本课程通过使用 MATLAB 的动手项目,为初学者配备必要的计算机视觉技能。你将学习自动化图像处理、训练深度学习模型,并实施先进的技术,完成诸如运动检测和目标分类等任务。

📐 **计算机视觉第一原理专业化**:本专业化课程提供了计算机视觉的全面基础,重点关注其背后的数学和物理原理。学员将获得图像处理、3D 重建、目标识别和视觉感知的实践经验。

🧠 **计算机视觉的深度学习应用**:本课程探讨计算机视觉,将经典技术与深度学习方法进行比较,完成诸如图像分类和目标检测等任务。课程包括使用 TensorFlow 等现代工具的动手教程,使学员能够构建和训练神经网络。

💻 **嵌入式机器学习的计算机视觉**:本课程教你如何使用卷积神经网络 (CNN) 进行图像分类和目标检测,重点放在将这些模型部署到嵌入式系统 (TinyML)。由 EdgeImpulse、OpenMV、SeeedStudio 和 TinyML 基金会提供,它需要基本的 Python、ML 和数学知识。动手项目涉及训练和部署 CNN 到微控制器或单板计算机。

📊 **使用 TensorFlow 的高级计算机视觉**:本课程涵盖使用 TensorFlow 进行图像分类、目标检测和图像分割的高级技术。你将使用 ResNet-50、U-Net 和 MaskR-CNN 等模型,应用迁移学习,并使用类激活图等工具探索模型可解释性。

🤖 **嵌入式系统的计算机视觉**:本课程涵盖了像 Raspberry Pi 和 Jetson 这样的嵌入式系统上的计算机视觉,重点关注有限资源的挑战。你将学习使用 OpenCV 和 PyTorch 等工具,探索优化性能的方法,并完成 Google Colab 上的编程作业。关键主题包括图像处理、机器学习以及量化和修剪等技术,以提高资源受限环境中的效率。

🦾 **机器人技术:视觉智能和机器学习**:来自 PennX 的这门高级课程探讨了机器人如何使用视觉智能和机器学习来感知和与其环境交互。你将学习构建能够从数据中适应和学习的识别算法,涵盖图像过滤、目标识别和 3D 姿态估计等主题。课程包括使用 MATLAB 和 OpenCV 的动手项目,例如视频稳定、3D 目标识别和设计卷积神经网络 (CNN)。

Computer vision is rapidly transforming industries by enabling machines to interpret and make decisions based on visual data. From autonomous vehicles to medical imaging, its applications are vast and growing. Learning computer vision is essential as it equips you with the skills to develop innovative solutions in areas like automation, robotics, and AI-driven analytics, driving the future of technology. This article covers the top computer vision courses that can help you master this critical skill.

Introduction to Computer Vision and Image Processing

This course introduces beginners to the exciting field of Computer Vision, covering image processing, classification, and object detection using Python, OpenCV, and Pillow. It includes hands-on labs with Jupyter Labs and CV Studio, where learners will create and deploy a custom computer vision web app to the cloud.

Introduction to Computer Vision

This course provides an advanced introduction to computer vision and image processing. Over two weeks, you’ll learn to extract features from images, apply deep learning techniques for tasks like classification, and work on a real-world project to detect facial key points using a convolutional neural network (CNN).

Computer Vision

The Computer Vision Nanodegree Program offers advanced training in computer vision, deep learning, and robotics. Over two months, you’ll master object detection, feature extraction, and image analysis through real-world projects. Key topics include CNNs, RNNs, SLAM, and object tracking. The program also covers practical applications like image captioning, facial keypoint detection, and skin cancer detection using neural networks.

Computer Vision in Microsoft Azure

This course teaches how to use Microsoft Azure’s Computer Vision service to analyze images, preparing learners for the AI-900 certification exam. It covers image classification, face detection, and optical character recognition (OCR), making it suitable for beginners in AI and Azure.

MathWorks Computer Vision Engineer Professional Certificate

This program equips beginners with essential computer vision skills through hands-on projects using MATLAB. You’ll learn to automate image processing, train deep learning models, and implement advanced techniques for tasks like motion detection and object classification.

First Principles of Computer Vision Specialization

This specialization provides a comprehensive foundation in computer vision, focusing on the mathematical and physical principles behind it. Learners will gain hands-on experience with image processing, 3D reconstruction, object recognition, and visual perception.

Deep Learning Applications for Computer Vision

This course explores Computer Vision, comparing classic techniques with Deep Learning methods for tasks like image classification and object detection. It includes hands-on tutorials with modern tools like TensorFlow, allowing learners to build and train neural networks.

Computer Vision with Embedded Machine Learning

This course teaches how to use deep learning with convolutional neural networks (CNNs) for image classification and object detection, focusing on deploying these models to embedded systems (TinyML). Offered by Edge Impulse, OpenMV, Seeed Studio, and the TinyML Foundation, it requires basic Python, ML, and math knowledge. Hands-on projects involve training and deploying CNNs to microcontrollers or single-board computers.

Advanced Computer Vision with TensorFlow

This course covers advanced techniques in image classification, object detection, and image segmentation using TensorFlow. You’ll work with models like ResNet-50, U-Net, and Mask R-CNN, apply transfer learning, and explore model interpretability with tools like class activation maps.

Computer Vision for Embedded Systems

This course covers computer vision on embedded systems like Raspberry Pi and Jetson, focusing on the challenges of limited resources. You’ll learn to use tools like OpenCV and PyTorch, explore methods to optimize performance, and complete programming assignments on Google Colab. Key topics include image processing, machine learning, and techniques like quantization and pruning to enhance efficiency in resource-constrained environments.

Robotics: Vision Intelligence and Machine Learning

This advanced course from PennX explores how robots use visual intelligence and machine learning to perceive and interact with their environment. You’ll learn to build recognition algorithms that can adapt and learn from data, covering topics like image filtering, object recognition, and 3D pose estimation. The course includes hands-on projects using MATLAB and OpenCV, such as video stabilization, 3D object recognition, and designing convolutional neural networks (CNNs).


We make a small profit from purchases made via referral/affiliate links attached to each course mentioned in the above list.

If you want to suggest any course that we missed from this list, then please email us at strong>asif@marktechpost.com</strong

The post Top Computer Vision Courses appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

计算机视觉 深度学习 图像处理 目标检测 机器学习
相关文章