PaperAgent 2024年09月05日
自进化Agent:兼具反思与记忆增强能力
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

SAGE框架是一种创新框架,旨在解决大模型在动态环境中持续决策、长期记忆缺乏以及有限的上下文窗口等问题。它通过整合迭代反馈、反思机制和基于艾宾浩斯遗忘曲线的记忆优化机制,显著提升了智能体处理多任务和长跨度信息的能力。SAGE框架包括三个智能体:用户、助手和检查器,通过协作和自进化,有效减少认知负荷,提高模型性能。

🤔 **迭代反馈机制**:助手根据检查器的反馈不断优化输出,直到检查器认为输出正确或达到迭代限制。这种机制确保了智能体的输出质量和准确性,并通过不断的学习和调整,逐步提高其性能。

🧠 **反思机制**:助手分析任务成功和失败的经验,并将这些经验存储在记忆中,以便在未来任务中做出更好的决策。这种机制帮助智能体积累经验,并通过反思来改进其决策能力。

📚 **记忆语法**:结合艾宾浩斯遗忘曲线和语言知识,优化助手的记忆和外部存储管理,有效处理和保留重要信息。这种机制确保了智能体能够有效地存储和检索信息,并避免遗忘关键内容。

📈 **实验结果**:SAGE框架在多个基准测试中显著提高了模型性能,尤其在较小模型上表现突出。在AgentBench测试中,SAGE框架不仅增强了像GPT-3.5和GPT-4这样的强大基线模型的性能,还显著提高了开源模型的性能。

💡 **SAGE框架的优势**:通过整合迭代反馈、反思机制和记忆优化机制,SAGE框架有效减少了复杂任务中的基本错误和逻辑错误,并提升了智能体在处理多任务和长跨度信息方面的能力。

🕵️‍♀️ **案例研究**:TriviaQA案例研究表明,SAGE框架能够有效地处理用户提出的问题,并提供准确的答案。

🚀 **未来展望**:SAGE框架为解决大模型的记忆和决策问题提供了一种新的思路,并有望在未来应用于更广泛的领域,例如对话系统、智能助手等。

2024-09-05 11:22 湖北

大模型在动态环境中持续决策、长期记忆缺乏以及有限的上下文窗口等方面仍面临挑战:

提出了一个创新框架——具有反思和记忆增强能力的自进化智能体SAGE)。SAGE框架包括三个智能体用户、助手和检查器。通过整合迭代反馈、反思机制和基于艾宾浩斯遗忘曲线的记忆优化机制,显著提升了智能体处理多任务和长跨度信息的能力。智能体通过自进化能够适应性地调整策略、优化信息存储和传输,并有效减少认知负荷。

SAGE框架的示意图

使用SAGE框架的HotpotQA示例的插图

实验结果表明,SAGE框架在多个基准测试中显著提高了模型性能,尤其在较小模型上表现突出。在AgentBench测试中,SAGE框架不仅增强了像GPT-3.5和GPT-4这样的强大基线模型的性能,还显著提高了开源模型(qwen-7b、codellama-7b、llama2-7b、chatglm2-6b)的性能。

在是否使用SAGE框架的情况下,AgentBench的基线性能

通过反馈机制和记忆优化,SAGE框架有效减少了复杂任务中的基本错误和逻辑错误。

六项任务中各种执行结果的分布。(CLE:超出上下文限制,TLE:超出任务限制)。超出任务限制是任务未能完成的主要原因,这指出了在有限时间框架内,大型语言模型(LLM)Agent在推理和决策方面存在局限性。

在使用GPT和SAGE框架的TriviaQA案例研究

User:
Answer the question based on the given passages. Only give me the answer and do not output anyother words.The following are given passages:History of canals in Great Britain - London Canal Museum History of canals in Great Britain Home >History > Canals in Britain In the history of canals, Britain was not a pioneer. The Chinese can claimthat the Grand Canal of China was one of the first, in the tenth century,a. . . . . .Answer the question based on the given passages. Only give me the answer and do not output anyother words.Question: Which metal is produced by the Bessemer Process?Answer:
Assistant:
The content of the file seems to be an HTML document related to the administrative division of Turkey,including population statistics, charts, and maps. This file contains scripts, metadata, and structureddata typical for a web page.Checker:Clear Objectives: When answering user questions, the focus should be on directly addressing thequestion without introducing irrelevant information. Document Handling: Before confirming whetherthe document content is relevant to the question, detailed aspects of the document should not bedirectly addressed.
Reflection:
Issue Description: The user wants to understand why the system outputs irrelevant HTML documentcontent based on user input and seeks detailed feedback and reflection. Reasons for the Error:Misinterpretation of Input: The system mistakenly assumed that the user uploaded a file and attemptedto read its content, whereas the user only provided text input. Processing Logic Error: Withoutclearly determining the user’s intent, the system directly parsed and outputted file content. UserExperience Problems: Irrelevant Output: The user expects concise, relevant answers, but the systemprovided lengthy and irrelevant HTML content, affecting the user experience. Poor Communication:Failure to accurately understand and respond to the user’s real needs resulted in off-topic responsesIn-depth Reflection and Improvement Suggestions: Clarify User Intent: Accurate Parsing of UserInput: Enhance the system’s natural language processing capabilities to accurately distinguish whetherthe user uploaded a file or simply provided text input. User Feedback Mechanism: Implement a userfeedback mechanism to promptly adjust the understanding of user intent. For example, confirm theissue to verify if the user uploaded a file. Optimize Processing Logic: Layered Processing Flow: Insystem design, separate file processing logic from text response logic to avoid misjudgments. Forinstance, when a user uploads a file, process the file content separately; when a user inputs text, providerelevant answers directly. Pre-processing Check: Prior to handling files, perform pre-processing checksto confirm if the file content meets expectations. . . . . . .
LLMs with SAGE response: Steel.
Ground truthSteel.

Self-evolving Agents with reflective and memory-augmented abilitieshttps://arxiv.org/pdf/2409.00872

推荐阅读


欢迎关注我的公众号“PaperAgent”,每天一篇大模型(LLM)文章来锻炼我们的思维,简单的例子,不简单的方法,提升自己。

跳转微信打开

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

自进化智能体 SAGE框架 大模型 记忆增强 反思机制 迭代反馈
相关文章