少点错误 2024年08月28日
Universal dimensions of visual representation
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

文章探讨神经网络模型与生物视觉的关系,发现它们通过共享一组潜在维度来表示自然图像,且最符合大脑的表示是那些通用且独立于网络特定特征的,一些共享维度似乎代表高级语义属性。

🧠神经网络模型的视觉学习与生物视觉存在关联,它们虽在表面上有很大差异,但通过多样构建的视觉神经网络,发现其用共享的潜在维度来表示自然图像。

👀通过将这些网络与用fMRI测量的人类大脑表示进行比较,发现神经网络中最与大脑对齐的表示是具有通用性且独立于网络特定特征的。

🌟每个网络可被缩减到少于十个最通用的维度,且对其与人类大脑的表示相似性影响不大,同时一些共享维度的后层似乎代表高级语义属性。

Published on August 28, 2024 10:38 AM GMT

Authors: Zirui Chen, Michael F. Bonner.

Quick take: this seems among the strongest evidence yet for the Natural Abstration Hypothesis.

Abstract:

Do neural network models of vision learn brain-aligned representations because they share architectural constraints and task objectives with biological vision or because they learn universal features of natural image processing? We characterized the universality of hundreds of thousands of representational dimensions from visual neural networks with varied construction. We found that networks with varied architectures and task objectives learn to represent natural images using a shared set of latent dimensions, despite appearing highly distinct at a surface level. Next, by comparing these networks with human brain representations measured with fMRI, we found that the most brain-aligned representations in neural networks are those that are universal and independent of a network's specific characteristics. Remarkably, each network can be reduced to fewer than ten of its most universal dimensions with little impact on its representational similarity to the human brain. These results suggest that the underlying similarities between artificial and biological vision are primarily governed by a core set of universal image representations that are convergently learned by diverse systems.

They also show that some of the shared dimensions of later layers seem to represent high-level semantic properties.



Discuss

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

神经网络模型 生物视觉 通用图像表示 高级语义属性
相关文章