第四十七期

报告人:Yifan Wu,  Northwestern University

时间:8月19日(星期一)3:30pm

地点:静园五院204

Host:王颖,图灵班2019级

报告信息

Title

Calibration Error for Decision Making

Abstract

A sequence of predictions is calibrated if and only if it induces no swap regret to all down-stream decision tasks. We study the Maximum Swap Regret (MSR) of predictions for binary events: the swap regret maximized over all downstream tasks with bounded payoffs. Previously, the best online prediction algorithm for minimizing MSR is obtained by minimizing the K1 calibration error, which upper bounds MSR up to a constant factor. However, recent work (Qiao and Valiant, 2021) gives an Ω(T0.528) lower bound for the worst-case expected K1 calibration error incurred by any randomized algorithm in T rounds, presenting a barrier to achieving better rates for MSR. Several relaxations of MSR have been considered to overcome this barrier, via external regret (Kleinberg et al., 2023) and regret bounds depending polynomially on the number of actions in downstream tasks (Noarov et al., 2023; Roth and Shi, 2024). We show that the barrier can be surpassed without any relaxations: we give an efficient randomized prediction algorithm that guarantees O(T√logT) expected MSR. We also discuss the economic utility of calibration by viewing MSR as a decision-theoretic calibration error metric and study its relationship to existing metrics.

Biography

 

Yifan Wu is a fourth year PhD student at Northwestern University, advised by Prof. Jason Hartline. She received my B.S. in Computer Science from Peking University in 2020, where she worked with Prof. Yuqing Kong.

Yifan has a broad interest in theoretical computer science and economics. Currently, she works on data economics, and specifically on algorithmic acquisition and evaluation of information, under a statistical decision theory framework.

about CS Peer Talk

作为活动的发起人,我们来自北京大学图灵班科研活动委员会,主要由图灵班各年级同学组成。我们希望搭建一个CS同学交流的平台,促进同学间的交流合作,帮助同学练习展示,同时增进友谊。

目前在计划中的系列包括但不限于:

    教程系列学生讲者为主,介绍自己的研究领域

    研究系列学生讲者为主,介绍自己的研究成果

    客座系列邀请老师做主题报告

除非报告人特别要求,报告默认是非公开的,希望营造一个自由放松但又互相激励的交流氛围。

主讲嘉宾招募

如果你愿意和大家分享你的学术成果、经历经验,总结回顾、触发新思,欢迎报名自荐

主讲人报名:发邮件至 cs_research_tc@163.com,写明想讲的题目、内容及时间。

北京大学图灵班科研活动委员会

—   版权声明  —

本微信公众号所有内容,由北京大学前沿计算研究中心微信自身创作、收集的文字、图片和音视频资料,版权属北京大学前沿计算研究中心微信所有;从公开渠道收集、整理及授权转载的文字、图片和音视频资料,版权属原作者。本公众号内容原作者如不愿意在本号刊登内容,请及时通知本号,予以删除。