MarkTechPost@AI 2024年08月15日
Sarvam AI Releases Samvaad-Hi-v1 Dataset and Sarvam-2B: A 2 Billion Parameter Language Model with 4 Trillion Tokens Focused on 10 Indic Languages for Enhanced NLP
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

Sarvam AI发布了其最新的语言模型Sarvam-2B,这是一个拥有20亿参数的强大模型,代表了印度语言处理的重大进步。该模型专注于包容性和文化代表性,从头开始在4万亿高质量token的大型数据集上进行预训练,其中50%专门用于印度语言。Sarvam AI还推出了Samvaad-Hi-v1数据集,这是一个精心策划的包含10万个高质量英语、印地语和印地语-英语对话的集合。该数据集以印度语境为特色,为致力于多语言和文化相关的AI模型的研究人员和开发人员提供了宝贵的资源。Samvaad-Hi-v1旨在增强对话式AI系统的训练,使这些系统能够更自然、更有上下文相关性地理解和与用户进行互动,涵盖印度流行的不同语言和方言。

🚀 Sarvam-2B是一个拥有20亿参数的强大语言模型,代表了印度语言处理的重大进步。该模型从头开始在4万亿高质量token的大型数据集上进行预训练,其中50%专门用于印度语言,包括孟加拉语、古吉拉特语、印地语、卡纳达语、马拉雅拉姆语、马拉地语、奥里亚语、旁遮普语、泰米尔语和泰卢固语。Sarvam-2B的开发重点是包容性和文化代表性,旨在填补印度语言在AI研究中的代表性不足的空白。

💬 Samvaad-Hi-v1数据集是一个包含10万个高质量英语、印地语和印地语-英语对话的集合。该数据集以印度语境为特色,为致力于多语言和文化相关的AI模型的研究人员和开发人员提供了宝贵的资源。Samvaad-Hi-v1旨在增强对话式AI系统的训练,使这些系统能够更自然、更有上下文相关性地理解和与用户进行互动,涵盖印度流行的不同语言和方言。

🤖 Sarvam AI还发布了其他补充模型,包括Bulbul 1.0、Saaras 1.0和Mayura 1.0,这些模型分别提供文本到语音、语音到文本和翻译功能,进一步增强了Sarvam-2B的能力,并为研究人员和开发人员提供了全面的工具集。

📈 Sarvam-2B的发布标志着Sarvam AI在印度语言处理领域取得了重大进展,为该地区的多语言AI生态系统做出了贡献。Sarvam AI致力于通过其模型和数据集来促进印度语言的数字化,为印度语者提供更广泛的AI应用和服务。

💡 Sarvam AI的努力为推动包容性和文化代表性在AI领域的发展树立了榜样,展示了通过专注于特定语言和文化需求来构建更强大、更有效的AI模型的潜力。

🌎 Sarvam-2B的推出也突显了全球范围内对多语言AI模型的需求不断增长。随着世界变得越来越互联,能够处理多种语言的AI模型将变得越来越重要,这将有助于弥合数字鸿沟,并为所有人提供更公平、更有效的AI体验。

🌟 Sarvam-2B和Samvaad-Hi-v1数据集的发布将为印度语言处理研究和开发提供新的动力,并为构建更具包容性和文化相关性的AI模型铺平道路,以满足印度语者不断增长的需求。

🌟 这种对印度语言的专注和对包容性的重视对推动AI领域的多样化和包容性至关重要,有助于确保AI技术的益处惠及全球所有群体。

🌟 Sarvam AI的努力为其他致力于开发多语言AI模型的研究人员和开发人员树立了榜样,鼓励他们将注意力转向特定语言和文化需求,为构建更强大、更有效的AI模型铺平道路,以满足全球日益增长的需求。

Sarvam AI has recently unveiled its cutting-edge language model, Sarvam-2B. This powerful model, boasting 2 billion parameters, represents a significant stride in Indic language processing. With a focus on inclusivity and cultural representation, Sarvam-2B is pre-trained from scratch on a massive dataset of 4 trillion high-quality tokens, with an impressive 50% dedicated to Indic languages. This development, particularly their ability to understand and generate text in languages, is historically underrepresented in AI research.

They have also introduced the Samvaad-Hi-v1 dataset, a meticulously curated collection of 100,000 high-quality English, Hindi, and Hinglish conversations. This dataset is uniquely designed with an Indic context, making it an invaluable resource for researchers and developers working on multilingual and culturally relevant AI models. Samvaad-Hi-v1 is poised to enhance the training of conversational AI systems that can understand and engage with users more naturally and contextually appropriately across different languages and dialects prevalent in India.

The Vision Behind Sarvam-2B

Sarvam AI’s vision with Sarvam-2B is clear: to create a robust and versatile language model that excels in English and champions Indic languages. This is especially important in a country like India, where linguistic diversity is vast, and the need for AI models that can effectively process and generate text in multiple languages is paramount.

The model supports 10 Indic languages, including Bengali, Gujarati, Hindi, Kannada, Malayalam, Marathi, Oriya, Punjabi, Tamil, and Telugu. This broad language support ensures the model is accessible to many users across different linguistic backgrounds. The model’s architecture and training process have been meticulously designed to ensure it performs well across all supported languages, making it a versatile tool for developers and researchers.

Technical Excellence and Implementation

Sarvam-2B has been trained on a balanced mix of English and Indic language data, each contributing 2 trillion tokens to the training process. This careful balance ensures that the model is equally proficient in English and the supported Indic languages. The training process involved sophisticated techniques to enhance the model’s understanding and generation capabilities, making it one of the most advanced models in its category.

Expanding the Horizon: Complementary Models

In addition to Sarvam-2B, Sarvam AI has also introduced three other remarkable models that complement its capabilities:

Conclusion

Sarvam AI launched Sarvam-2B, particularly in the context of language models designed for Indic languages. By dedicating half of its training data to these languages, Sarvam-2B stands out as a model that actively promotes linguistic diversity’s importance. The model’s versatility, combined with the complementary capabilities of Bulbul 1.0, Saaras 1.0, and Mayura 1.0, positions Sarvam AI as a leader in developing inclusive, innovative, and forward-thinking AI technologies.


Check out the Model Card and Dataset. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. If you like our work, you will love our newsletter..

Don’t Forget to join our 48k+ ML SubReddit

Find Upcoming AI Webinars here


The post Sarvam AI Releases Samvaad-Hi-v1 Dataset and Sarvam-2B: A 2 Billion Parameter Language Model with 4 Trillion Tokens Focused on 10 Indic Languages for Enhanced NLP appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Sarvam AI Sarvam-2B Samvaad-Hi-v1 印度语言 语言模型 自然语言处理 AI
相关文章