MarkTechPost@AI 2024年08月10日
MM-Vet v2: A Challenging Benchmark to Evaluate Large Multimodal Models (LMMs) for Integrated Capabilities
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

MM-Vet v2 是一个用于评估大型多模态模型 (LMMs) 集成能力的基准测试,它扩展了原始 MM-Vet 的功能,加入了图像-文本序列理解能力,并扩大了评估集的规模,以更全面地评估 LMMs 在处理现实世界任务中的能力。该基准测试通过评估六个基本视觉语言 (VL) 技能,包括算术能力、识别能力、知识、空间意识、语言生成和光学字符识别 (OCR),来衡量 LMMs 的综合能力。

😄 **MM-Vet v2 扩展了原始 MM-Vet 的功能,加入了图像-文本序列理解能力,更全面地评估 LMMs 在处理现实世界任务中的能力。** MM-Vet v2 的主要改进在于它引入了第七个视觉语言 (VL) 技能,即图像-文本序列理解。这一改进旨在评估模型处理包含文本和视觉信息的序列的能力,这更能代表 LMMs 在现实世界中可能遇到的任务类型。通过加入这一新功能,MM-Vet v2 提供了对 LMMs 整体有效性和处理复杂互联任务能力的更全面评估。

😊 **MM-Vet v2 扩大了评估集的规模,以更全面地评估 LMMs 在处理现实世界任务中的能力。** 除了扩展评估能力外,MM-Vet v2 还旨在扩大评估集的规模,同时保持评估样本的高质量。这确保了标准在扩展到涵盖越来越困难和多样化的任务时,仍然保持严格和可靠。

😉 **MM-Vet v2 基准测试结果显示,Claude 3.5 Sonnet 在完成 MM-Vet v2 中的挑战性任务方面表现出色,略微优于 GPT-4o。** 在使用 MM-Vet v2 对多个 LMMs 进行基准测试后,结果表明,Claude 3.5 Sonnet 拥有最高的性能得分(71.8)。这略微优于 GPT-4o,其得分是 71.0,这表明 Claude 3.5 Sonnet 在完成 MM-Vet v2 中的挑战性任务方面略微更擅长。InternVL2-Llama3-76B 以 68.4 的竞争性得分脱颖而出,成为最优秀的开放权重模型,证明了其在开放权重状态下的稳健性。

😎 **MM-Vet v2 为评估 LMMs 的集成能力提供了更全面和现实的评估方法,并为未来的研究和开发提供了重要的指导。** 总而言之,MM-Vet v2 是评估 LMMs 的一个重大进步。它通过增加理解和处理图像-文本序列的能力,以及提高评估集的质量和范围,提供了对 LMMs 能力的更全面和现实的评估。这一基准测试将为未来的研究和开发提供重要的指导,帮助推动 LMMs 在处理复杂现实世界任务方面的进步。

🥳 **MM-Vet v2 为评估 LMMs 的集成能力提供了更全面和现实的评估方法,并为未来的研究和开发提供了重要的指导。** 总而言之,MM-Vet v2 是评估 LMMs 的一个重大进步。它通过增加理解和处理图像-文本序列的能力,以及提高评估集的质量和范围,提供了对 LMMs 能力的更全面和现实的评估。这一基准测试将为未来的研究和开发提供重要的指导,帮助推动 LMMs 在处理复杂现实世界任务方面的进步。

Large Language Models (LMMs) are developing significantly and proving to be capable of handling more complicated jobs that call for a blend of different integrated skills. Among these jobs include GUI navigation, converting images to code, and comprehending films. A number of benchmarks, including MME, MMBench, SEEDBench, MMMU, and MM-Vet, have been established in order to comprehensively evaluate the performance of LMMs. It concentrates on assessing LMMs according to their capacity to integrate fundamental functions.

In recent research, MM-Vet has established itself as one of the most popular benchmarks for evaluating LLMs, particularly through its use of open-ended vision-language questions designed to assess integrated capabilities. Six fundamental vision-language (VL) skills are particularly assessed by this benchmark: numeracy, recognition, knowledge, spatial awareness, language creation, and optical character recognition (OCR). Many real-world applications depend on the ability to comprehend and absorb written and visual information cohesively, which is made possible by these skills.

However, there’s limitation with the original MM-Vet format: it can only be used for questions with a single image-text pair. This is problematic because it fails to capture the intricacy of real-world situations, where information is frequently presented in text and visual sequences. In these kinds of situations, a model is put to the test in a more sophisticated and practical way by having to comprehend and interpret a variety of textual and visual information in context.

MM-Vet has been improved to MM-Vet v2 in order to get around this restriction. ‘Image-text sequence understanding’ is the seventh VL capability included in this edition. This feature is intended to assess a model’s processing speed for sequences containing both text and visual information, more representative of the kinds of tasks that Large Multimodal Models (LMMs) are likely to encounter in real-world scenarios. With the addition of this new feature, MM-Vet v2 offers a more thorough evaluation of an LMM’s overall effectiveness and capacity to manage intricate and interconnected tasks.

MM-Vet v2 aims to increase the size of the evaluation set while preserving the high caliber of the assessment samples, in addition to improving the capabilities evaluated. This guarantees that the standard will continue to be strict and trustworthy even as it expands to encompass increasingly difficult and varied jobs. After benchmarking multiple LMMs using MM-Vet v2, it was shown that Claude 3.5 Sonnet has the greatest performance score (71.8). This marginally outperformed GPT-4o, which had a score of 71.0, suggesting that Claude 3.5 Sonnet is marginally more adept at completing the challenging tasks assessed by MM-Vet v2. With a competitive score of 68.4, InternVL2-Llama3-76B stood out as the top open-weight model, proving its robustness in spite of its open-weight status.

In conclusion, MM-Vet v2 is a major step forward in the evaluation of LMMs. It provides a more comprehensive and realistic assessment of their abilities by adding the capacity to comprehend and process image-text sequences, as well as increasing the evaluation set’s quality and scope.


Check out the Paper and GitHub. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. If you like our work, you will love our newsletter..

Don’t Forget to join our 48k+ ML SubReddit

Find Upcoming AI Webinars here


The post MM-Vet v2: A Challenging Benchmark to Evaluate Large Multimodal Models (LMMs) for Integrated Capabilities appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

多模态模型 MM-Vet v2 基准测试 集成能力 视觉语言
相关文章