MarkTechPost@AI 2024年08月03日
Wolf: A Mixture-of-Experts Video Captioning Framework that Outperforms GPT-4V and Gemini-Pro-1.5 in General Scenes, Autonomous Driving, and Robotics Videos
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

Wolf是一种用于准确视频字幕的混合专家框架,在多个领域的视频字幕生成中表现出色,超越了当前先进方法。

🎬 Wolf采用混合专家方法,利用图像和视频视觉语言模型,捕捉不同层次信息,有效进行视频理解、自动标注和字幕生成。

📊 研究者引入CapScore指标,用于评估生成字幕与真实情况的相似度和质量,Wolf在这方面表现优异。

💪 Wolf在多个数据集上进行评估,与多种先进方法对比,在场景理解和动作描述等方面表现突出,显著提升了视频字幕的质量。

🌟 Wolf代表了自动化视频字幕的重要进步,结合字幕模型和总结技术,能从多视角全面理解视频。

Video captioning has become increasingly important for content understanding, retrieval, and training foundation models for video-related tasks. Despite its importance, generating accurate, detailed, and descriptive video captions is challenging in fields like computer vision and natural language processing. Various key obstacles hinder progress in this area. One such example is the scarcity of high-quality data as the data from the internet are inaccurate and large datasets are very expensive. Moreover, video captioning is inherently more complex than image captioning due to temporal correlations and camera motion. The lack of established benchmarks and the critical need for correctness in safety-critical applications make this challenge more complex in this domain.

Recent advancements in visual language models have improved image captioning, however, these models face challenges with video captioning due to temporal complexities. The video-specific models like PLLaVa, Video-llava, and Video-LLama have been developed to address this challenge. Their techniques include parameter-free pooling, joint image-video training, and audio input processing. Researchers have also explored using large language models (LLMs) for summarization tasks, as shown by LLaDA and OpenAI’s re-captioning method. Despite these advancements, this field needs an established benchmark and the critical need for accuracy in safety-sensitive applications.

Researchers from NVIDIA, UC Berkeley, MIT, UT Austin, University of Toronto, and Stanford University have proposed Wolf, a WOrLd summarization Framework for accurate video captioning. Wolf uses a mixture-of-experts approach, utilizing both image and video Vision Language Models (VLMs) to capture different levels of information and efficiently summarize. The framework is developed to enhance video understanding, auto-labeling, and captioning. The researchers introduced CapScore, an LLM-based metric that evaluates the similarity and quality of generated captions compared to the ground truth. Wolf outperforms current state-of-the-art methods and commercial solutions, significantly boosting CapScore in challenging driving videos.

Wolf’s evaluation uses four datasets: 500 Nuscences Interactive Videos, 4,785 Nuscences Normal Videos, 473 general videos, and 100 robotics videos. The proposed CapScore metric evaluates caption similarity to the ground truth. The proposed method is compared with state-of-the-art methods including CogAgent, GPT-4V, VILA-1.5, and Gemini-Pro-1.5. Image-level methods like CogAgent and GPT-4V process sequential frames, while video-based methods such as VILA-1.5 and Gemini-Pro-1.5 handle full video inputs. A consistent prompt is used across all the models, focusing on expanding visual and narrative elements, especially motion behavior.

The results indicate that Wolf outperforms state-of-the-art approaches in video captioning. While GPT-4V is better in scene recognition, it struggles with temporal information. Gemini-Pro-1.5 captures some video context but lacks detail in motion description. In contrast, Wolf efficiently captures scene context and detailed motion behaviors, such as vehicles moving in different directions and responding to traffic signals. Quantitatively, Wolf outperforms current methods, like VILA1.5, CogAgent, Gemini-Pro-1.5, and GPT-4V. In challenging driving videos, Wolf improves CapScore by 55.6% in quality and 77.4% in similarity compared to GPT-4V. These results underscore Wolf’s ability to provide more comprehensive and accurate video captions.

In conclusion, researchers have introduced Wolf, a WOrLd summarization Framework for accurate video captioning. Wolf represents a significant advancement in automated video captioning, combining captioning models and summarization techniques to produce detailed and correct descriptions. This approach allows for a comprehensive understanding of videos from various perspectives, particularly excelling in challenging scenarios like multiview driving videos. Researchers have established a leaderboard to encourage competition and innovation in video captioning technology. They also plan to create a comprehensive library featuring diverse video types with high-quality captions, regional information such as 2D or 3D bounding boxes and depth data, and multiple object motion details.


Check out the Paper and Project. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. If you like our work, you will love our newsletter..

Don’t Forget to join our 47k+ ML SubReddit

Find Upcoming AI Webinars here


The post Wolf: A Mixture-of-Experts Video Captioning Framework that Outperforms GPT-4V and Gemini-Pro-1.5 in General Scenes, Autonomous Driving, and Robotics Videos appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Wolf 视频字幕 CapScore 混合专家
相关文章