MarkTechPost@AI 2024年07月31日
This AI Paper Presents a Survey of the Current Methods Used to Achieve Refusal in LLMs: Provide Evaluation Benchmarks and Metrics Used to Measure Abstention in LLMs
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了大语言模型中实现拒绝的方法,包括对现有方法的调研、评估基准和指标的提供,以及对未来研究方向的探讨,以增强模型的可靠性和安全性。

🎯大语言模型在自然语言处理中存在问题,如产生幻觉和有害内容,需引入弃权机制来缓解。文章提出从查询、模型和人类价值对齐的角度评估查询可答性的框架。

📋文章对大语言模型中的弃权策略进行分类和研究,根据其在预训练、对齐和推理阶段的应用进行分类。并探讨了确定弃权的输入处理方法,包括模糊性预测和价值错位检测。

🔍研究发现明智的弃权对增强大语言模型的可靠性和安全性起关键作用。文章提出从查询、模型和人类价值的角度考虑弃权的框架,指出现有方法的不足,提出未来研究方向,如增强隐私保护、将弃权推广到其他AI领域等。

Prior work on abstention in large language models (LLMs) has made significant strides in query processing, answerability assessment, and handling misaligned queries. Researchers have explored methods to predict question ambiguity, detect malicious queries, and develop frameworks for query alteration. The BDDR framework and self-adversarial training pipelines have been introduced to analyze query changes and classify attacks. Evaluation benchmarks like SituatedQA and AmbigQA have been crucial in assessing LLM performance with unanswerable or ambiguous questions. These contributions have established a foundation for implementing effective abstention strategies in LLMs, enhancing their ability to handle uncertain or potentially harmful queries.

The University of Washington and Allen Institute for AI researchers have surveyed abstention in large language models, highlighting its potential to reduce hallucinations and enhance AI safety. They present a framework analyzing abstention from the query, model, and human value perspectives. The study reviews existing abstention methods, categorizes them by LLM development stages, and assesses various benchmarks and metrics. The authors identify future research areas, including exploring abstention as a meta-capability across tasks and customizing abstention abilities based on context. This comprehensive review aims to expand the impact and applicability of abstention methodologies in AI systems, ultimately improving their reliability and safety.

This paper explores the capabilities and challenges of large language models in natural language processing. While LLMs excel in tasks like question answering and summarization, they can produce problematic outputs such as hallucinations and harmful content. The authors propose incorporating abstention mechanisms to mitigate these issues, allowing LLMs to refuse answers when uncertain. They introduce a framework evaluating query answerability and alignment with human values, aiming to expand abstention strategies beyond current calibration techniques. The survey encourages new abstention methods across diverse tasks, enhancing AI interaction robustness and trustworthiness. It contributes an analysis framework, reviewing existing methods and discussing underexplored abstention aspects.

The paper’s methodology focuses on classifying and examining abstention strategies in large language models. It categorizes methods based on their application during pre-training, alignment, and inference stages. A novel framework evaluates queries from the query, model capability, and human value alignment perspectives. The study explores input-processing approaches to determine abstention, including ambiguity prediction and value misalignment detection. It incorporates calibration techniques while acknowledging their limitations. The methodology also outlines future research directions, such as privacy-enhanced designs and generalizing abstention beyond LLMs. The authors review existing benchmarks and evaluation metrics, identifying gaps to inform future research and improve abstention strategies’ effectiveness in enhancing LLM reliability and safety.

The study’s findings highlight the critical role of judicious abstention in bolstering the dependability and security of large language models.. It introduces a framework considering abstention from query, model, and human value perspectives, providing a comprehensive overview of current strategies. The study identifies gaps in existing methodologies, including limitations in evaluation metrics and benchmarks. Future research directions proposed include enhancing privacy protections, generalizing abstention beyond LLMs, and improving multilingual abstention. The authors encourage studying abstention as a meta-capability across tasks and advocate for more generalizable evaluation and customization of abstention capabilities. These findings underscore abstention’s significance in LLMs and outline a roadmap for future research to improve abstention strategies’ effectiveness and applicability in AI systems.

The paper concludes by highlighting several key aspects of abstention in large language models. It identifies under-explored research directions and advocates studying abstention as a meta-capability across various tasks. The authors emphasize the potential of abstention-aware designs to enhance privacy and copyright protections. They suggest generalizing abstention beyond LLMs to other AI domains and stress the need for improved multilingual abstention capabilities. The survey underscores strategic abstention’s importance in enhancing LLM reliability and safety, emphasizing the need for more adaptive and context-aware mechanisms. Overall, the paper outlines a roadmap for future research to improve abstention strategies’ effectiveness and ethical considerations in AI systems.


Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. If you like our work, you will love our newsletter..

Don’t Forget to join our 47k+ ML SubReddit

Find Upcoming AI Webinars here

The post This AI Paper Presents a Survey of the Current Methods Used to Achieve Refusal in LLMs: Provide Evaluation Benchmarks and Metrics Used to Measure Abstention in LLMs appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大语言模型 弃权策略 评估基准 可靠性 安全性
相关文章