MarkTechPost@AI 2024年07月29日
Advances and Challenges in Predicting TCR Specificity: From Clustering to Protein Language Models
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

近年来,免疫测序和实验方法的进步产生了大量的 T 细胞受体 (TCR) 库数据,使模型能够预测 TCR 结合特异性。T 细胞在适应性免疫系统中发挥作用,通过识别病原体或患病细胞的非自身抗原的 TCR 来协调靶向免疫反应。TCR 多样性对于识别多种抗原至关重要,它是通过涉及 V、D 和 J 基因片段的随机 DNA 重排产生的。虽然理论上的 TCR 多样性非常高,但个体中实际的多样性要小得多。TCR 与主要组织相容性复合体 (pMHC) 上的肽相互作用,一些 TCR 识别多个 pMHC 复合体。 来自 IBM 研究欧洲、苏黎世应用科学大学计算生命科学研究所和耶鲁医学院的研究人员回顾了用于预测 TCR 结合特异性的计算模型的演变。他们强调机器学习,涵盖了早期的无监督聚类方法、监督模型以及蛋白质语言模型 (PLM) 在生物信息学中的变革性影响,特别是在 TCR 特异性分析中。该综述讨论了数据集偏差、泛化问题和模型验证缺陷。它强调了提高模型可解释性和从大型复杂模型中提取生物学见解的重要性,以增强 TCR-pMHC 结合预测,并彻底改变免疫疗法的开发。

🤔 **数据挑战:** TCR 特异性数据来自 VDJdb 和 McPas-TCR 等数据库,但这些数据集存在重大局限性。批量测序是高通量且经济高效的,但无法检测配对的 α 和 β 链,而能够检测配对的单细胞技术则价格昂贵且代表性不足。大多数数据集集中在有限数量的表位上,主要是病毒来源的表位,与常见的 HLA 等位基因相关,显示出明显的偏差。此外,缺乏负面数据使监督机器学习模型开发变得复杂。生成人工负面对会引入偏差,高性能模型可能会记住序列,导致结果过于乐观。确保生成的负面对准确反映真实的非结合分布仍然是一个挑战。

🤖 **模型演变:** 自 2017 年以来,TCR 特异性建模已显着发展,从无监督聚类方法开始。最初的模型,如 TCRdist 和 GLIPH,根据序列相似性和生化特性对 TCR 进行分组。这些方法表明 TCR 序列包含有价值的特异性信息,但它们在处理复杂的非线性相互作用方面存在困难。这促使开发了监督模型,这些模型利用机器学习技术更好地处理日益复杂的数据。早期的监督模型,包括 TCRGP 和 TCRex,采用高斯过程和随机森林等分类器来预测 TCR 特异性。同时,基于神经网络的方法,如 NetTCR 和 DeepTCR,利用先进的架构来提高预测精度。

🚀 **蛋白质语言模型的突破:** PLM 的引入标志着 TCR 特异性预测的最新进展。这些模型基于 Transformer 架构,在广泛的蛋白质序列数据集上进行训练,在各种蛋白质相关任务中取得了非凡的性能。例如,TCR-BERT 和 STAPLER 利用经过微调的 BERT 模型进行 TCR 和抗原分类,证明了 PLM 在捕获复杂序列相互作用方面的有效性。尽管取得了成功,但在解决词汇歧义和增强模型可解释性方面仍然存在挑战。未来在嵌入优化和适应特定于蛋白质序列的可解释性方法方面的改进对于 TCR 特异性预测的进一步发展至关重要。

🧬 **未来的方向:** 准确的 TCR 特异性预测对于改善免疫疗法和了解自身免疫性疾病至关重要。有限和有偏差的数据,特别是表位信息,对当前模型构成挑战,阻碍了对新表位的泛化。机器学习的进步,包括 CNN、RNN、迁移学习和 PLM,显着增强了 TCR 预测模型,但挑战仍然存在,特别是在预测新表位的特异性方面。IMMREP22 和 IMMREP23 等基准突出了公平模型比较和泛化性的困难。适应 TCR 模型以进行 BCR 预测,这涉及非线性表位和复杂的抗原相互作用,带来了进一步的计算挑战。

💡 **关键要点:** TCR 特异性预测面临着数据偏差、模型可解释性等挑战,但蛋白质语言模型的引入为该领域带来了新的希望。未来的研究应集中在解决数据挑战、改进模型可解释性以及将 TCR 模型应用于 BCR 预测等方面,以推动免疫疗法和自身免疫性疾病研究的发展。

Recent advances in immune sequencing and experimental methods generate extensive T cell receptor (TCR) repertoire data, enabling models to predict TCR binding specificity. T cells play a role in the adaptive immune system, orchestrating targeted immune responses through TCRs that recognize non-self antigens from pathogens or diseased cells. TCR diversity, essential for recognizing diverse antigens, is generated through random DNA rearrangement involving V, D, and J gene segments. While theoretical TCR diversity is extremely high, the actual diversity in an individual is much smaller. TCRs interact with peptides on the major histocompatibility complex (pMHC), with some TCRs recognizing numerous pMHC complexes.

Researchers from IBM Research Europe, the Institute of Computational Life Sciences at Zürich University of Applied Sciences, and Yale School of Medicine review the evolution of computational models for predicting TCR binding specificity. Emphasizing machine learning, they cover early unsupervised clustering approaches, supervised models, and the transformative impact of Protein Language Models (PLMs) in bioinformatics, particularly in TCR specificity analysis. The review addresses dataset biases, generalization issues, and model validation shortcomings. It highlights the importance of improving model interpretability and extracting biological insights from large, complex models to enhance TCR-pMHC binding predictions and revolutionize immunotherapy development.

TCR specificity data comes from databases like VDJdb and McPas-TCR, but these datasets have significant limitations. Bulk sequencing is high-throughput and cost-effective but can’t detect paired α and β chains, while single-cell technologies that can are expensive and underrepresented. Most datasets focus on a limited number of epitopes, predominantly of viral origin and associated with common HLA alleles, showing significant bias. Additionally, the lack of negative data complicates supervised machine learning model development. Generating artificial negative pairs introduces biases, and high-performance models can memorize sequences, leading to over-optimistic results. Ensuring generated negative pairs accurately reflect true non-binding distributions remains a challenge.

Since 2017, the modeling of TCR specificity has evolved significantly, beginning with unsupervised clustering methods. Initial models like TCRdist and GLIPH grouped TCRs based on sequence similarities and biochemical properties. These methods demonstrated that TCR sequences contain valuable specificity information, but they struggled with complex nonlinear interactions. This prompted the development of supervised models that utilized machine learning techniques to handle the increasing complexity of data better. Early supervised models, including TCRGP and TCRex, employed classifiers such as Gaussian Processes and random forests to predict TCR specificity. Meanwhile, neural network-based approaches like NetTCR and DeepTCR leveraged advanced architectures to enhance predictive accuracy.

The introduction of PLMs marked the latest advancement in TCR specificity prediction. Based on Transformer architectures, these models were trained on extensive protein sequence datasets, achieving remarkable performance in various protein-related tasks. TCR-BERT and STAPLER, for example, utilized BERT-based models fine-tuned for TCR and antigen classification, demonstrating the effectiveness of PLMs in capturing complex sequence interactions. Despite their success, challenges remain in addressing lexical ambiguity and enhancing model interpretability. Future improvements in embedding optimization and adaptation of interpretability methods specific to protein sequences are crucial for further advancements in TCR specificity prediction.

Accurate TCR specificity prediction is vital for improving immunotherapies and understanding autoimmune diseases. Limited and biased data, particularly epitope information, challenge current models, hindering generalization to new epitopes. Advances in machine learning, including CNNs, RNNs, transfer learning, and PLMs, have significantly enhanced TCR prediction models, but challenges remain, especially in predicting specificity for novel epitopes. Benchmarks like IMMREP22 and IMMREP23 highlight difficulties in fair model comparison and generalizability. Adapting TCR models for BCR prediction, which involves non-linear epitopes and complex antigen interactions, presents further computational challenges.


Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. If you like our work, you will love our newsletter..

Don’t Forget to join our 47k+ ML SubReddit

Find Upcoming AI Webinars here

The post Advances and Challenges in Predicting TCR Specificity: From Clustering to Protein Language Models appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

TCR 蛋白质语言模型 免疫疗法 生物信息学 机器学习
相关文章