1. Hoel EP, Albantakis L, Tononi G. Quantifying causal emergence shows that macro can beat micro. Proc Natl Acad Sci U S A. 2013 Dec 3;110(49):19790-5. doi: 10.1073/pnas.1314922110. Epub 2013 Nov 18. PMID: 24248356; PMCID: PMC3856819.
2. Tononi, G., Sporns, O. Measuring information integration. BMC Neurosci 4, 31 (2003). https://doi.org/10.1186/1471-2202-4-31
3. Rosas, Fernando E., et al. "Reconciling emergence: An information-theoretic approach to identify causal emergence in multivariate data." PLoS computational biology 16.12 (2020): e1008289.
4. Mediano PAM, Rosas FE, Luppi AI, Jensen HJ, Seth AK, Barrett AB, Carhart-Harris RL, Bor D. 2022 Greater than the parts: a review of the information decomposition approach to causal emergence. Phil. Trans. R. Soc. A 380: 20210246. https://doi.org/10.1098/rsta.2021.024
5. Luppi, A. I., Rosas, F. E., Mediano, P. A. M., Menon, D. K., & Stamatakis, E. A. (2024). Information decomposition and the informational architecture of the brain. Trends in Cognitive Sciences, 28(4), 352–368. https://doi.org/10.1016/j.tics.2023.11.005
6. Luppi, A. I., Rosas, F. E., Mediano, P. A. M., Demertzi, A., Menon, D. K., & Stamatakis, E. A. (2024). Unravelling consciousness and brain function through the lens of time, space, and information. Trends in Neurosciences, 47(7), 551-568. https://doi.org/10.1016/j.tins.2024.05.007
7. Varley, T.F., Pope, M., Faskowitz, J. et al. Multivariate information theory uncovers synergistic subsystems of the human cerebral cortex. Commun Biol 6, 451 (2023). https://doi.org/10.1038/s42003-023-04843-w
8. Varley, T. F., Pope, M., Puxeddu, M. G., Faskowitz, J., & Sporns, O. (2023). Partial entropy decomposition reveals higher-order information structures in human brain activity. Proceedings of the National Academy of Sciences, 120(30), e2300888120. https://doi.org/10.1073/pnas.2300888120
9.. Varley, T. F. (2024). Generalized decomposition of multivariate information. PLOS ONE, 19(2), e0297128. https://doi.org/10.1371/journal.pone.0297128
10. Grasso, M., Albantakis, L., Lang, J.P. et al. Causal reductionism and causal structures. Nat Neurosci 24, 1348–1355 (2021). https://doi.org/10.1038/s41593-021-00911-8
11. Bedau, M. A. (1997). Weak Emergence. Philosophical Perspectives, 11, 375–399. http://www.jstor.org/stable/2216138
12. Varley, T.F. Flickering Emergences: The Question of Locality in Information-Theoretic Approaches to Emergence. Entropy 2023, 25, 54. https://doi.org/10.3390/e25010054
13. Varley, Thomas F., and Erik Hoel. "Emergence as the conversion of information: a unifying theory." Philosophical Transactions of the Royal Society A 380.2227 (2022): 20210150.
14. . P.A.M. Mediano, et al. Towards an extended taxonomy of information dynamics via integrated information decomposition. arXiv (2021). http://doi.org/10.48550/arxiv.2109.13186
15. Luppi, A. I., Mediano, P. A. M., Rosas, F. E., Allanson, J., Pickard, J. D., Carhart-Harris, R., Williams, G. B., Craig, M. M., Finoia, P., Owen, A. M., Naci, L., Menon, D. K., Bor, D., & Stamatakis, E. A. (2024). A synergistic workspace for human consciousness revealed by integrated information decomposition. *eLife, 88173. https://doi.org/10.7554/eLife.88173
16. Bassett DS, Gazzaniga MS. Understanding complexity in the human brain. Trends Cogn Sci. 2011 May;15(5):200-9. doi: 10.1016/j.tics.2011.03.006. Epub 2011 Apr 14. PMID: 21497128; PMCID: PMC3170818.
17. Murphy, K. A., & Bassett, D. S. (2024). Information decomposition in complex systems via machine learning. Proceedings of the National Academy of Sciences, 121(13).https://doi.org/10.1073/pnas.2312988121
18. Seth, A. K. (2008, August). Measuring emergence via nonlinear Granger causality. In alife (Vol. 2008, pp. 545-552).
19. Yuan, B., Zhang, J., Lyu, A., Wu, J., Wang, Z., Yang, M., Liu, K., Mou, M., & Cui, P. (2024). Emergence and Causality in Complex Systems: A Survey of Causal Emergence and Related Quantitative Studies. Entropy, 26(1), 108. https://doi.org/10.3390/e26020108
20. Zhang, Jiang & Liu, Kaiwei. (2022). Neural Information Squeezer for Causal Emergence. Entropy. 2023. 10.3390/e25010026.
21. Yang, Mingzhe, et al. "Finding emergence in data: causal emergence inspired dynamics learning." arXiv preprint arXiv:2308.09952 (2023).
22. Luppi AI, Mediano PAM, Rosas FE, Holland N, Fryer TD, O'Brien JT, Rowe JB, Menon DK, Bor D, Stamatakis EA. A synergistic core for human brain evolution and cognition. Nat Neurosci. 2022 Jun;25(6):771-782. doi: 10.1038/s41593-022-01070-0. Epub 2022 May 26. PMID: 35618951; PMCID: PMC7614771.
23. Paul L. Williams,Randall D. Beer: Nonnegative Decomposition of Multivariate Information ,arXiv:1004.2515,2010
24. Proca, A. M., Rosas, F. E., Luppi, A. I., Bor, D., Crosby, M., & Mediano, P. A. M. (2024). Synergistic information supports modality integration and flexible learning in neural networks solving multiple tasks. PLoS Computational Biology, 20(6), e1012178.https://doi.org/10.1371/journal.pcbi.1012178
25. Huang, Z., Mashour, G. A., & Hudetz, A. G. (2023). Functional geometry of the cortex encodes dimensions of consciousness. Nature Communications, 14, 72.https://doi.org/10.1038/s41467-022-35764-7
26. Luppi, A. I., Vohryzek, J., Kringelbach, M. L., Mediano, P. A. M., Craig, M. M., Adapa, R., ... & Stamatakis, E. A. (2023). Distributed harmonic patterns of structure-function dependence orchestrate human consciousness. Communications Biology, 6, 117.https://doi.org/10.1038/s42003-023-04474-1
27. Seth, A. K., Barrett, A. B., & Barnett, L. (2011). Causal density and integrated information as measures of conscious level. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1942), 3748–3767.https://doi.org/10.1098/rsta.2011.0079
28. Ince, R.A.A. (2017) The partial entropy decomposition: decomposing multivariate entropy and mutual information via pointwise common surprisal. arXiv, Published online February 20, 2017. https://doi.org/10.48550/arXiv.1702.01591
29. Betzel, R. F., & Bassett, D. S. (2017). Multi-scale brain networks. NeuroImage, 160, 73–83.https://doi.org/10.1016/j.neuroimage.2016.11.006